前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据分析中不得不知道的留存知识

数据分析中不得不知道的留存知识

作者头像
曲奇
发布2022-05-09 21:53:33
1K0
发布2022-05-09 21:53:33
举报
文章被收录于专栏:曲奇的博客

留存是什么

互联网流量竞争愈发激烈,获客成本不断提升,企业不可能无限制的投入成本拉取新用户,那么最大限度的保证用户的留存就变得异常重要。最近看了红杉资本一篇关于留存的文章,翻译了大概的要点,也稍微添油加醋。

许多面向ToC的产品根据在注册后的特定时间段内执行给定操作(例如登录、发送消息等)的用户百分比来定义留存率。

留存既可以用来衡量产品与市场的匹配程度,又可用于推动产品的增长。除了定义在整个产品上的留存率,留存还可以在功能级别分析用户的参与度,还有助于分析不同的用户群体(如地域、性别)。

留存率是指新增用户在一段时间内再次登录游戏的比例。如次日(第1天)留存率指的是新用户在首次登录后的次日再次登录游戏的比例。7日留存率指的是新用户在首次登录后的第6天再次登录游戏的比例。加权留存率指的是某一段时间内(时间段a)的新增用户在若干天后的另一段时间(时间段b)的留存数量除以之前那个时间段(时间段a)的新增用户总量。

日期

新进人数

次留人数

1/1

100

50

1/2

10

9

加权留存率= (50+9)/(100+10)=53.64%

平均留存率=(0.5+0.9)/2=70%

典型留存率曲线有3种:

理解3种典型留存率曲线,认识产品增长率的最佳杠杆

  1. 趋平型曲线: 曲线趋于稳定的数值很重要
  2. 下滑型曲线:产品没有达到和市场匹配,最后用户数会越来越少
  3. 微笑型曲线:随着产品的进步或者网络效应,流失用户在hyper growth阶段重新回归。

但大多数产品随着用户行为转变、竞争或其他因素,最后可能留存率会逐渐趋于0,包括那些曾经有过“微笑曲线”的产品。

怎么衡量留存率

需要关注两个因素:时间粒度、定义留存的事件

电商或旅游产品可能期待用户每个季度回归一次,但是社交应用或游戏则是期望用户每天使用。

定义留存事件则至少登录一次的用户吗?还是有一次购物行为?诸如Uber或Lyft之类的共享出行应用会将事件定义为一次完整的搭乘,而不是打开应用。诸如Spotify和Netflix之类的内容流媒体服务可能将事件定义为开始收听或观看某个内容。

除了产品层面的留存率之外,你还可能想要定义单个功能层面的留存率,其中事件被定义为使用产品的某个功能。例如,亚马逊可以衡量其心愿清单的使用情况来帮助提高功能开发和产品路线图规划的优先级。

同期群分析Triangle retention chart

img

第一列表示群组规模,之后整行表示那个群组每隔一段时间的留存。第一列可以给你一种新的观察用户增长的角度:在增长吗?更多的用户注册了吗?还能观察外源性事件的影响,对第一列新用户注册是否产生了抑制或增长。

通过给某些百分比值配色(类似热力图),你可以快速地辨认出留存率的变化,通常这些变化将以水平、对角或垂直特征显示。

  1. 水平:分析该期群用户的留存。如16年2月份的期群用户人数明显多于其他,可能是在既定的一个月内有拉新活动或好友邀请等活动,但是该期群用户留存明显较低。
  2. 对角:影响整体使用的产品特征发布、新闻或其它活动。影响所有用户群组。
  3. 垂直:通常出现在具备订阅业务以及提供用户试用的业务中。例如,亚马逊Prime服务的美元或交易留存率图表可能每12个月会出现一次明显的垂直特征,发生的事情是,年付费会员更新了。

复合时间框架(Composing time frames)

选择合适的时间框架很重要,有时候实施了拉新或增长策略后,要过一段时间才能反应在留存上。

我们可以将一个群组的长期留存率(下面方程中的364天)分解成多个比率。该方程可以从左到右理解为一个用户漏斗,其中D1/D0是次留,等等。(D0是群组中安装者的数量,D1是一天后仍然使用该产品的群组数量。)

如果D7/D1对于所有群组来说保持相对稳定,但是D1留存率出现下滑,将注意力集中在提升D1保留率上,因为这将可能是长期保留率的最大杠杆。类似的,如果D1留存率是平坦的,但是D7/D1在下滑,专注于找到让第一周用户而非第一天用户积极活跃的新方式。最终,你的目标是提升长期保留率,但是监测这些分数也很重要,因为他们是长期留存趋势的早期迹象。

如何提升留存率

首先我们需要有一个正确的留存率度量标准,其次,根据我们遇到的不同情况:

  • 下滑型曲线:是每个群组的留存率曲线变平。
  • 趋平型曲线:抬高平坦曲线的长期留存率。
  • 微笑型曲线:庆祝吧!

提升留存用户参与度

增长的关键在于保留现有用户,提高他们对产品的参与度。识别出参与度最高、留存最好的“超级用户”,了解他们是怎么使用产品的。

为了辨别出超级用户,首先假设哪些特征是产品价值定位的核心所在,比如微信就是社交通讯,亚马逊则是购物和配送。基于用户的参与方式及参与频率来细分他们。使用任何有价值特征最频繁的用户,就是你的超级用户。

当你发现了这些用户,就可以研究他们一开始的行为。他们在早期使用时有哪些特征?他们在达到“临界点”并且真正迷上产品之前参与产品的核心功能有一个固定次数吗?例如,Facebook有一个著名的发现,即在10天内连接到7个好友,能大大提升留存率,这带来了一种鼓励用户到达这个里程碑的产品策略。这就是Aha Moment,就是你的用户发现产品内在价值并形成粘性用户留存的那一瞬间。

为新用户减少阻力

对于大多数产品来说——尤其是新产品,曲线在开始的数天、数周和一个月内都是相当陡的。在这个期间流失的用户是整体流失用户中的绝大多数,因此,在早期驱动新用户的参与(及由此提高留存率)非常有价值。

为了提升新用户的留存率,了解注册(或购买)漏斗是很重要的。例如,有多少人观看过这个产品的广告,是通过哪些渠道?有多少人点击过那个广告?有多少人然后创建了账户,以及7天后有多少保留下来?24天后呢?84天后呢?研究每个阶段用户数量的骤降,有助于你理解渠道(付费和免费)的有效性以及发现注册和服务流程中的任何问题。

指导原则

  1. 设定比较基准,如同类竞品。
  2. 参与度驱动留存率,可以用日活跃用户比例(DAU)或者月活跃用户比例(MAU)衡量参与度。如果参与度下降,在留存率受到影响之前要快速地挽回局势。
  3. 尽早减少流失。监测和实施早期留存率(D1/D7/D28等)的改变对于取得强大的长期留存率来说十分关键。
  4. 新用户受产品类别、阶段、市场渗透率的影响。早期用户往往留存高于后期用户,很多后期用户都是临时需求。但是随着产品发展,很多用户也会回流。对于有社交网络的产品,旧期群的用户会随着新期群加入而回流。产品渗透率高了之后,期群留存率都会下降。
  5. 留存率也可用于具体功能层面。产品整体留存率和功能留存率也不尽相同。

加油,去给你的产品创造Aha Moment吧!

本文首发于知乎 曲奇 的专栏 数据分析 | 大数据 | 机器学习

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-12-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 留存是什么
  • 怎么衡量留存率
    • 同期群分析(Triangle retention chart )
      • 复合时间框架(Composing time frames)
      • 如何提升留存率
        • 提升留存用户参与度
          • 为新用户减少阻力
          • 指导原则
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档