首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >实战 | 用户购买行为RFM标签应用案例

实战 | 用户购买行为RFM标签应用案例

作者头像
CDA数据分析师
发布2022-04-15 14:04:21
发布2022-04-15 14:04:21
1.4K0
举报
文章被收录于专栏:CDA数据分析师CDA数据分析师

CDA数据分析师 出品

作者:CDA资深讲师 张藉予

编辑:Mika

随着数据分析的不断应用与发展,用户画像已经广为人知。其中的核心原理就是对用户进行分群,而用户分群的主要逻辑就是将数据进行标签化。

RFM模型是我们常用来分析客户价值的数据分析模型,使用这个模型分析后配合匹配的营销方法,能够让业绩进行大幅度提升。

RFM模型具有分析结构简单,易用、数据容易获取等特性,通过这个模型可以衡量客户价值和创造利润能力。

通过3个简单的指标,可以将客户按照价值分成8个类别,从而使用不同的销售策略提升业绩。

下面给大家介绍一个关于RFM模型的标签化应用案例

点击下方视频,先睹为快

http://mpvideo.qpic.cn/0bc3liadeaaataaapqjybrrfawwdgjnaamqa.f10002.mp4?

首先拿到数据集,导入数据集。

然后我们会进行数据读取,看一下数据的基本信息数据是否有无缺失。

第二步我们将数据集进行特征筛选。

首先我们发现导入的原始数据的时间格式有一些问题,因此将时间进行了处理。

通过一些掉包的方式将时间格式处理成了我们想要的时间格式,然后我们将数据集进行RFM的计算。

首先,计算R。

因为R是取消费的时间间隔,所以我们取出了每个客户ID下的最近的一次消费时间,然后定义了一个最大的消费时间,然后与其做相减得出来了每个客户的最近一次的消费时间间隔。

第二个是计算F。

F是计算客户对于打折商品的偏好程度。

所以我们将数据进行了处理之后,计算出来了特价商品占特价商品跟普通商品的比例,这样得出来了用户对于打折商品的用户的偏好程度。

第三个是计算M。

M是用户的消费金额,我们将数据进行加加减减,最后得出来了用户关于特价商品跟普通商品的消费金额。

然后我们将所计算的RFM进行了特征的整合,得出来了每个客户ID下的RFM具体的数值。

然后下一步将RFM进行分段打分。

这里给出两个方法。

一是函数映射。

我们将数据当中的RFM进行了等级分箱的处理,然后定义了分段函数,将每个RFM的值对分段函数进行比较,得出来了一个01RFM的数据集。

第二个方法是利用Python自带的算法库。

我们将阈值取出,然后将阈值进行01编码,最后也是同样能够得到RFM的01数据。

然后我们将RFM模型定性的输出,将01进行标签化的处理,从而给用户打上各种各样的标签:兴趣是否高,价值是否活跃……

我们可以通过这些标签给到业务端人员进行更好的营销活动。

好的,以上就是今天的分享。如果大家还有数据分析方面相关的疑问,就在评论区留言。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-03-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档