前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Python可视化分析全球火山分布,发现了这些有趣的现象

用Python可视化分析全球火山分布,发现了这些有趣的现象

作者头像
用户6888863
发布2022-04-13 19:31:45
5450
发布2022-04-13 19:31:45
举报
文章被收录于专栏:AI篮球与生活

也就在前天,南太平洋岛国汤加发生火山喷发,有专门的专家学者分析,这可能是30年来全球规模最大的一次海底火山喷发,它引发的海啸以及火山灰将对周边的大气、洋流、淡水、农业以及民众健康等都造成不同程度的影响。

今天小编就用Python当中的folium模块以及其他的可视化库来对全球的火山情况做一个分析。

准备工作

和以往一样,我们先导入需要数据分析过程当中需要用到的模块并且读取数据集,本次的数据集来自由kaggle网站,主要由美国著名的史密森学会整理所得

代码语言:javascript
复制
import pandas as pd
import folium.plugins as plugins
import folium

df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()

output

数据集包含了这些个数据

代码语言:javascript
复制
df_volcano.columns

output

代码语言:javascript
复制
Index(['volcano_number', 'volcano_name', 'primary_volcano_type',
       'last_eruption_year', 'country', 'region', 'subregion', 'latitude',
       'longitude', 'elevation', 'tectonic_settings', 'evidence_category',
       'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4',
       'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3',
       'minor_rock_4', 'minor_rock_5', 'population_within_5_km',
       'population_within_10_km', 'population_within_30_km',
       'population_within_100_km'],
      dtype='object')

全球火山带的分布可视化

我们通过调用folium模块来绘制一下全球各个火山的分布,代码如下

代码语言:javascript
复制
volcano_map = folium.Map()

# 将每一行火山的数据添加进来
for i in range(0, df_volcano.shape[0]):
    volcano = df_volcano.iloc[i]
    folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)

volcano_map

output

上述代码的逻辑大致来看就是先实例化一个Map()对象,然后遍历每一行的数据,主要针对的是数据集当中的经纬度数据,并且在地图上打上标签,我们点击每一个标签都会自动弹出对应的火山的名称

当然出来的可视化结果不怎么美观,我们先通过简单的直方图来看一下全球火山的分布情况,代码如下

代码语言:javascript
复制
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))

volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')

volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')

plt.tight_layout()
plt.show()

output

可以看到火山主要集中在美国、印度尼西亚以及日本较多,而单从地域来看,南美以及日本、中国台湾和印度尼西亚等地存在着较多的火山

全球火山带的分布可视化优化

接下来我们来优化一下之前绘制的全球火山分布的地图,调用folium模块当中CircleMarker方法,并且设定好标记的颜色与大小

代码语言:javascript
复制
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('')

# 将每一行火山的数据添加进来
for i in range(0, df_volcano.shape[0]):
    volcano = df_volcano.iloc[i]
    groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
                                         popup=volcano['volcano_name'], radius=3, color='blue',
                                         fill=True, fill_color='blue',fill_opacity=0.8))
    
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())

output

地图可视化实战

然后我们来看一下这次火山的爆发地点,汤加共和国位于西南太平洋,属于大洋洲,具体位置是在西经175°和南纬20°左右,

代码语言:javascript
复制
import folium.plugins as plugins
import folium

m = folium.Map([-21.178986, -175.198242],
               zoom_start=10,
               control_scale=True, width='80%')

m

output

第一个参数非常明显代表的是经纬度,而zoom_start参数代表的是缩放的程度,要是我们需要进一步放大绘制的图表,可以通过调整这个参数来实现,而width参数代表的则是最后图表绘制出来的宽度。

在地图上打上标记

我们也可以在绘制出来的地图上面打上标记,例如画个圆圈,代码如下

代码语言:javascript
复制
m = folium.Map([-21.178986, -175.198242],
               zoom_start=12,
               control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
              color = "purple").add_to(m)
m

output

或者给圈出来的区域标上颜色,代码如下

代码语言:javascript
复制
m = folium.Map([-21.178986, -175.198242],
               zoom_start=12,
               control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
              color = "purple", fill = True, fill_color = "red").add_to(m)
m

output

深远影响

本次汤加火山爆发的VEI强度为5-6级,属于本世纪以来最强等级,后面连带引发的海啸影响了太平洋沿岸地区。太平洋沿岸的智利、日本等国的潮位站监测到30厘米至150厘米的海啸波,我国潮位站最大海啸波幅在20厘米以下,短期内太平洋沿岸国际航运或受到影响,需要重点关注美豆到港情况。

而从长期来看,热带火山爆发或提高全球极端天气发生概率,从而影响农作物的生长,对整个农产品的供应造成深远的影响,而如果火山灰大面积扩散,或进一步影响全球航空业,降低运输效率,拖累全球供应链。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 关于数据分析与可视化 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 准备工作
  • 全球火山带的分布可视化
  • 全球火山带的分布可视化优化
  • 地图可视化实战
  • 在地图上打上标记
  • 深远影响
相关产品与服务
灰盒安全测试
腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档