前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >你可以恢复模糊的图像吗?

你可以恢复模糊的图像吗?

作者头像
小白学视觉
发布2022-02-14 10:10:21
1.1K0
发布2022-02-14 10:10:21
举报
文章被收录于专栏:深度学习和计算机视觉

有人认为恢复模糊的图像是不可能的,因为会丢失信息。但我对这个问题进行了很多思考,并认为如果输出图像的大小与输入图像的大小相同,那实际上是可能的!这样,输出就有足够的像素/信息来恢复原始像素/信息。

首先,解释一下什么是卷积以及如何使用卷积来模糊图像,以及它如何使用模糊的图像。卷积是一种数学运算,当应用于图像时,可以将其视为应用于它的过滤器。

在这个动画中,我们可以看到一个图像与过滤器/内核卷积的例子。原始图像是蓝色矩阵,内核是滑动的深蓝色矩阵,输出是蓝绿色矩阵。

卷积是通过将重叠的内核和图像相乘,然后对乘积求和来获得的。以下等式可能会有所帮助:给定图像x和内核k,卷积的结果将为y。

如果我们已经知道图像上的卷积是如何工作的,也许这个方程组并不太可怕;如果我们不知道,别担心,我们不必记住它,这就是程序的工作!一个有用的表示形式是将卷积解释为矩阵乘法,从上面的等式中可以很容易的写出来:

等价于矩阵方程

通过这种表示,似乎知道A和y,那么x可以通过求解上面的方程来计算。但是,由于A 的列数多于行数,因此该系统尚未确定,这意味着我们不能只获得一个解。

首先说,为了能够反转卷积,输入和输出大小必须相同。在矩阵形式中,这将对应于 A 是正方形(行和列的书面相同),从而我们可以将其求逆并将x计算为:

现在,我们的输入是 4x4,输出是 2x2。我们如何获得与输入相同大小的输出?一种方法是向输入图像中添加填充,例如 0 填充:

这样,输出将像原始输入一样是 4x4。详细地说,对于这种带有填充的卷积的简单情况,输出尺寸可以计算为:

如果我们希望输入和输出具有相同的大小,那么填充必须是:

这产生了一个重要条件:内核大小必须是奇数,因为填充是一个整数值。

这种卷积也可以表示为上述矩阵的乘积,但是我不会不厌其烦地阅读它,因为尺寸会大得多。可以写出与 y 的每个项相关联的卷积方程,然后将其构造为如上所述矩阵乘法。

请注意,尽管填充的输入是 6x6,对应于 36 个元素,但这些元素中只有 4x4 是唯一且未知的变量。因此,方程中的 x 只能是 16x1,而不是 36x1。

要求解 x 并反转卷积,只需知道 A 和 y 。要构造 A ,需要知道用于卷积的内核和所使用的填充类型。

现在,如何使用?可以通过卷积来模糊图像。例如,高斯模糊是通过将图像与内核/滤波器卷积来获得的,该内核/滤波器的中心具有高斯分布,最大值在中心,其值总和为 1。

我首先使用高斯模糊对图像进行模糊处理。我用高斯核对原始图像进行了卷积,并使用了复制填充(原始图像之外的值设置为最接近的边界值,而不是 0)。

左边是原图,右边是模糊图像。

因为我们知道使用的内核,所以我们能够构造矩阵 A 然后求解 x 。结果如预期:重建的图像与原始图像完全相同。

左边是模糊的图像,右边是重建的图像。

现在,这种 100% 重建是可能的,因为使用的内核和填充是已知的。如果我们使用的内核与用于模糊原始图像的内核不完全相同,会发生什么?

不使用精确内核时,左侧图像模糊,右侧重建图像。

如果假设使用复制填充时填充为 0 ,该怎么办呢?

在不假设精确填充的情况下,左侧图像模糊,右侧重建图像。

正如我们所见,如果我们不知道使用的内核和填充,那么我们就无法重建原始图像。从这个意义上说,它几乎可以看作是一个加密问题:如果我们知道“密钥”,那么我们便能够重建原始消息而不回造成任何损失或额外的噪音。

重建原始图像也是一项非常艰巨的任务,因为矩阵 A 会根据原始图像的大小增长非常快。如果原始图像是 4x4,那么 A 将是 16x16 ——元素数量以 N² 缩放。

希望小伙伴们喜欢这个简短的解释并发现它很有趣。我确实做到了,这是了解更多关于 Julia、卷积、图像处理和线性代数的好方法。

我认为我们现在不必担心人们不会恢复模糊的图像了。

左边是模糊的图像,右边是重建的图像。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档