前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Java基于百度AI+JavaCV+OpenCV 实现摄像头人数动态统计

Java基于百度AI+JavaCV+OpenCV 实现摄像头人数动态统计

作者头像
小帅丶
发布2021-12-28 13:03:50
1.4K0
发布2021-12-28 13:03:50
举报
文章被收录于专栏:XAI

【Java】人流量统计-动态版之视频转图识别请访问 http://ai.baidu.com/forum/topic/show/940413

本文是基于上一篇进行迭代的。本文主要是以摄像头画面进行人流量统计。并对返回图像进行展示。需要额外了解JavaCV OpenCV swing awt等

也许JavaCV OpenCV 不需要也可以实现效果。但是小帅丶就先用这样的方式实现了。别的方式大家就自己尝试吧

有可能显示的in out不对。请设置帧率试试。鄙人不是专业的。所以对帧率也不是很懂。以下代码加入也没有明显的变化。

代码语言:javascript
复制
grabber.setFrameRate(10);
grabber.setFrameNumber(10);

项目代码地址 https://gitee.com/xshuai/bodyTrack

  • 注意的问题
代码语言:javascript
复制
1.动态识别的area参数为矩阵的4个顶点的xy坐标(即像素) 顺序是 上左下右 也就是顺时针一圈4个点的坐标点
2.case_id 为int 请不要给大于int范围的值。或非int类型的值 即正整数就行 
3.area的值不要大于图片本身的宽高
  • 需要用到的jar 通过maven引入(下载的jar较多。需要等待较长时间)
代码语言:javascript
复制
<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <ffmpeg.version>3.2.1-1.3</ffmpeg.version>
    <javacv.version>1.4.1</javacv.version>
  </properties>

  <dependencies>
  
 <dependency>
      <groupId>org.bytedeco.javacpp-presets</groupId>
      <artifactId>ffmpeg-platform</artifactId>
      <version>${ffmpeg.version}</version>
    </dependency>
	<!-- fastjson -->
	<dependency>
		<groupId>com.alibaba</groupId>
		<artifactId>fastjson</artifactId>
		<version>1.2.35</version>
	</dependency>
    <dependency>
      <groupId>org.bytedeco</groupId>
      <artifactId>javacv</artifactId>
      <version>${javacv.version}</version>
    </dependency>

	<dependency>
		<groupId>org.bytedeco.javacpp-presets</groupId>
		<artifactId>opencv-platform</artifactId>
		<version>3.4.1-1.4.1</version>
	</dependency>
  </dependencies>
  • 需要用到的Java工具类
代码语言:javascript
复制
HttpUtil https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
  • 调用接口示例代码(需要自己的电脑有摄像头哦)
代码语言:javascript
复制
import java.awt.image.BufferedImage;
import java.awt.image.DataBufferByte;
import java.awt.image.WritableRaster;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileOutputStream;
import java.io.OutputStream;
import java.net.URLEncoder;
import java.util.Base64;
import java.util.Base64.Decoder;
import java.util.Base64.Encoder;

import javax.imageio.ImageIO;
import javax.swing.JFrame;

import org.bytedeco.javacpp.BytePointer;
import org.bytedeco.javacpp.opencv_core.IplImage;
import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.Frame;
import org.bytedeco.javacv.Java2DFrameConverter;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.javacv.OpenCVFrameConverter.ToIplImage;
import org.bytedeco.javacv.OpenCVFrameGrabber;

import com.alibaba.fastjson.JSONObject;

import cn.xsshome.body.util.HttpUtil;
/**
 * 获取摄像头画面进行处理并回显图片在画面中
 * 人流量统计(动态版)JavaAPI示例代码
 * @author 小帅丶
 *
 */
public class JavavcCameraTest {
	
	static OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
	//人流量统计(动态版)接口地址
	private static String BODY_TRACKING_URL="https://aip.baidubce.com/rest/2.0/image-classify/v1/body_tracking";
	
	private static String ACCESS_TOKEN ="";//接口的token
	/**
	 * 每个case的初始化信号,为true时对该case下的跟踪算法进行初始化,为false时重载该case的跟踪状态。当为false且读取不到相应case的信息时,直接重新初始化
	 * caseId=0 第一次请求  case_init=true  caseId>0 非第一次请求  case_init=false
	 */
	static int caseId = 0;
	public static void main(String[] args) throws Exception,
			InterruptedException {
		OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);
		grabber.start(); // 开始获取摄像头数据
		CanvasFrame canvas = new CanvasFrame("人流量实时统计");// 新建一个窗口
		canvas.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		canvas.setAlwaysOnTop(true);
		int ex = 0;
		while (true) {
			if (!canvas.isDisplayable()) {// 窗口是否关闭
				grabber.stop();// 停止抓取
				System.exit(2);// 退出
				grabber.close();
			}
			// canvas.showImage(grabber.grab());//显示摄像头抓取的画面
			Java2DFrameConverter java2dFrameConverter = new Java2DFrameConverter();
			// 摄像头抓取的画面转BufferedImage
			BufferedImage bufferedImage = java2dFrameConverter.getBufferedImage(grabber.grabFrame());
			// bufferedImage 请求API接口 检测人流量
			String result = getBodyTrack(bufferedImage);
			BufferedImage bufferedImageAPI = getAPIResult(result);
			// 如果识别为空 则显示摄像头抓取的画面
			if (null == bufferedImageAPI) {
				canvas.showImage(grabber.grab());
			} else {
				// BufferedImage转IplImage
				IplImage iplImageAPI = BufImgToIplData(bufferedImageAPI);
				// 将IplImage转为Frame 并显示在窗口中
				Frame convertFrame = converter.convert(iplImageAPI);
				canvas.showImage(convertFrame);
			}
			ex++;
//			Thread.sleep(100);// 100毫秒刷新一次图像.因为接口返回需要时间。所以看到的画面还是会有一定的延迟
		}
	}
	/**
     * BufferedImage转IplImage
     * @param bufferedImageAPI
     * @return
     */
    private static IplImage BufImgToIplData(BufferedImage bufferedImageAPI) {
    	IplImage iplImage = null;
    	ToIplImage iplConverter = new OpenCVFrameConverter.ToIplImage();
    	Java2DFrameConverter java2dConverter = new Java2DFrameConverter();
    	iplImage = iplConverter.convert(java2dConverter.convert(bufferedImageAPI));
		return iplImage;
	}
	/**
     * IplImage 转 BufferedImage
     * @param mat
     * @return BufferedImage
     */
	public static BufferedImage iplToBufImgData(IplImage mat) {
		if (mat.height() > 0 && mat.width() > 0) {
			//TYPE_3BYTE_BGR 表示一个具有 8 位 RGB 颜色分量的图像,对应于 Windows 风格的 BGR 颜色模型,具有用 3 字节存储的 Blue、Green 和 Red 三种颜色。 
			BufferedImage image = new BufferedImage(mat.width(), mat.height(),BufferedImage.TYPE_3BYTE_BGR);
			WritableRaster raster = image.getRaster();
			DataBufferByte dataBuffer = (DataBufferByte) raster.getDataBuffer();
			byte[] data = dataBuffer.getData();
			BytePointer bytePointer = new BytePointer(data);
			mat.imageData(bytePointer);
			return image;
		}
		return null;
	}
	/**
     * 接口结果转bufferimage
     * @param result
     * @return BufferedImage
     * @throws Exception 
     */
    private static BufferedImage getAPIResult(String result) throws Exception {
    	JSONObject object = JSONObject.parseObject(result);
    	BufferedImage bufferedImage = null;
    	if(object.getInteger("person_num")>=1){
    		Decoder decoder = Base64.getDecoder();
    		byte [] b = decoder.decode(object.getString("image"));
    		ByteArrayInputStream in = new ByteArrayInputStream(b);  
    		bufferedImage = ImageIO.read(in); 
    		
    		ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
    		ImageIO.write(bufferedImage,"jpg", baos); 
    		 byte[] imageInByte = baos.toByteArray(); 
            // Base64解码
    		for (int i = 0; i < imageInByte.length; ++i) {
    			if (imageInByte[i] < 0) {// 调整异常数据
    				imageInByte[i] += 256;
    			}
    		 }
    		 OutputStream out = new FileOutputStream("G:/testimg/xiaoshuairesult.jpg");//接口返回的渲染图
    		 out.write(imageInByte);
    		 out.flush();
    		 out.close();
    		return bufferedImage;
    	}else{
    		return null;
    	}
	}
	/**
	 * 获取接口处理结果图
	 * @param bufferedImage
	 * @return String
	 * @throws Exception
	 */
	public static String getBodyTrack(BufferedImage bufferedImage) throws Exception{
		 ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
         ImageIO.write(bufferedImage,"jpg",baos); 
         byte[] imageInByte = baos.toByteArray(); 
         Encoder base64 = Base64.getEncoder();
         String imageBase64 = base64.encodeToString(imageInByte);
        // Base64解码
		for (int i = 0; i < imageInByte.length; ++i) {
			if (imageInByte[i] < 0) {// 调整异常数据
				imageInByte[i] += 256;
			}
		 }
		 // 生成jpeg图片
		 OutputStream out = new FileOutputStream("G:/testimg/xiaoshuai.jpg");// 新生成的图片
		 out.write(imageInByte);
		 out.flush();
		 out.close();
		 System.out.println("保存成功");  
		 baos.flush();       
		 baos.close();
         String access_token = ACCESS_TOKEN;
                String case_id = "2018";
         String case_init = "";
         String area = "10,10,630,10,630,470,10,469";
         String params = "";
         if(caseId==0){
        	case_init = "true";
        	params = "image=" + URLEncoder.encode(imageBase64, "utf-8")
     				+ "&dynamic=true&show=true&case_id=" + case_id
     				+ "&case_init="+case_init +"&area="+area;
         }else{
        	 case_init = "false";
        	 params = "image=" + URLEncoder.encode(imageBase64, "utf-8")
 					+ "&dynamic=true&show=true&case_id=" + case_id
 					+ "&case_init="+case_init +"&area="+area; 
         }
         //静态识别
//		 String params = "image=" + URLEncoder.encode(imageBase64, "utf-8")+"&dynamic=false&show=true";
 		 String result = HttpUtil.post(BODY_TRACKING_URL, access_token, params);
 		 System.out.println("接口内容==>"+result);
		 return result;
	}
	/**
     * IplImage 转 BufferedImage
     * @param mat
     * @return BufferedImage
     */
	public static BufferedImage bufferimgToBase64(IplImage mat) {
		if (mat.height() > 0 && mat.width() > 0) {
			BufferedImage image = new BufferedImage(mat.width(), mat.height(),BufferedImage.TYPE_3BYTE_BGR);
			WritableRaster raster = image.getRaster();
			DataBufferByte dataBuffer = (DataBufferByte) raster.getDataBuffer();
			byte[] data = dataBuffer.getData();
			BytePointer bytePointer = new BytePointer(data);
			mat.imageData(bytePointer);
			return image;
		}
		return null;
	}
}
  • 摄像头中的内容截图示意(本人头像就不直接显示了。万一吓着大家呢) 也不要用去马赛克的技术还原图片哦。

还是很好玩的、不需要自己去整OpenCV一套就能实现统计摄像头中的人数。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档