前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于MATLAB的随机森林(RF)回归与变量重要性影响程度排序

基于MATLAB的随机森林(RF)回归与变量重要性影响程度排序

作者头像
疯狂学习GIS
发布2021-07-22 16:23:47
1.7K0
发布2021-07-22 16:23:47
举报
文章被收录于专栏:疯狂学习GIS

  本文分为两部分,首先是将代码分段、详细讲解,方便大家理解;随后是完整代码,方便大家自行尝试。另外,关于基于MATLAB的神经网络(ANN)代码与详细解释,大家可以查看这一篇博客[1]。

1 分解代码

1.1 最优叶子节点数与树数确定

  首先,我们需要对RF对应的叶子节点数与树的数量加以择优选取。

代码语言:javascript
复制
%% Number of Leaves and Trees Optimization

for RFOptimizationNum=1:5

RFLeaf=[5,10,20,50,100,200,500];
col='rgbcmyk';
figure('Name','RF Leaves and Trees');
for i=1:length(RFLeaf)
    RFModel=TreeBagger(2000,Input,Output,'Method','R','OOBPrediction','On','MinLeafSize',RFLeaf(i));
    plot(oobError(RFModel),col(i));
    hold on
end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error') ;
LeafTreelgd=legend({'5' '10' '20' '50' '100' '200' '500'},'Location','NorthEast');
title(LeafTreelgd,'Number of Leaves');
hold off;

disp(RFOptimizationNum);
end

  其中,RFOptimizationNum是为了多次循环,防止最优结果受到随机干扰;大家如果不需要,可以将这句话删除。

RFLeaf定义初始的叶子节点个数,我这里设置了从5500,也就是从5到500这个范围内找到最优叶子节点个数。

InputOutput分别是我的输入(自变量)与输出(因变量),大家自己设置即可。

  运行后得到下图:

  首先,我们看到MSE最低的线是红色的,也就是5左右的叶子节点数比较合适;再看各个线段大概到100左右就不再下降,那么树的个数就是100比较合适。

1.2 循环准备

  由于机器学习往往需要多次执行,我们就在此先定义循环。

代码语言:javascript
复制
%% Cycle Preparation

RFScheduleBar=waitbar(0,'Random Forest is Solving...');
RFRMSEMatrix=[];
RFrAllMatrix=[];
RFRunNumSet=10;
for RFCycleRun=1:RFRunNumSet

  其中,RFRMSEMatrixRFrAllMatrix分别用来存放每一次运行的RMSE、r结果,RFRunNumSet是循环次数,也就是RF运行的次数。

1.3 数据划分

  接下来,我们需要将数据划分为训练集与测试集。这里要注意:RF其实一般并不需要划分训练集与测试集,因为其可以采用袋外误差(Out of Bag Error,OOB Error)来衡量自身的性能。但是因为我是做了多种机器学习方法的对比,需要固定训练集与测试集,因此就还进行了数据划分的步骤。

代码语言:javascript
复制
%% Training Set and Test Set Division

RandomNumber=(randperm(length(Output),floor(length(Output)*0.2)))';
TrainYield=Output;
TestYield=zeros(length(RandomNumber),1);
TrainVARI=Input;
TestVARI=zeros(length(RandomNumber),size(TrainVARI,2));
for i=1:length(RandomNumber)
    m=RandomNumber(i,1);
    TestYield(i,1)=TrainYield(m,1);
    TestVARI(i,:)=TrainVARI(m,:);
    TrainYield(m,1)=0;
    TrainVARI(m,:)=0;
end
TrainYield(all(TrainYield==0,2),:)=[];
TrainVARI(all(TrainVARI==0,2),:)=[];

  其中,TrainYield是训练集的因变量,TrainVARI是训练集的自变量;TestYield是测试集的因变量,TestVARI是测试集的自变量。

  因为我这里是做估产回归的,因此变量名称就带上了“Yield”,大家理解即可。

1.4 随机森林实现

  这部分代码其实比较简单。

代码语言:javascript
复制
%% RF

nTree=100;
nLeaf=5;
RFModel=TreeBagger(nTree,TrainVARI,TrainYield,...
    'Method','regression','OOBPredictorImportance','on', 'MinLeafSize',nLeaf);
[RFPredictYield,RFPredictConfidenceInterval]=predict(RFModel,TestVARI);

  其中,nTreenLeaf就是1.1部分中我们确定的最优树个数与最优叶子节点个数,RFModel就是我们所训练的模型,RFPredictYield是预测结果,RFPredictConfidenceInterval是预测结果的置信区间。

1.5 精度衡量

  在这里,我们用RMSE与r衡量模型精度。

代码语言:javascript
复制
%% Accuracy of RF

RFRMSE=sqrt(sum(sum((RFPredictYield-TestYield).^2))/size(TestYield,1));
RFrMatrix=corrcoef(RFPredictYield,TestYield);
RFr=RFrMatrix(1,2);
RFRMSEMatrix=[RFRMSEMatrix,RFRMSE];
RFrAllMatrix=[RFrAllMatrix,RFr];
if RFRMSE<400
    disp(RFRMSE);
    break;
end
disp(RFCycleRun);
str=['Random Forest is Solving...',num2str(100*RFCycleRun/RFRunNumSet),'%'];
waitbar(RFCycleRun/RFRunNumSet,RFScheduleBar,str);
end
close(RFScheduleBar);

  在这里,我定义了当RMSE满足<400这个条件时,模型将自动停止;否则将一直执行到1.2中我们指定的次数。其中,模型每一次运行都会将RMSE与r结果记录到对应的矩阵中。

1.6 变量重要程度排序

  接下来,我们结合RF算法的一个功能,对所有的输入变量进行分析,去获取每一个自变量对因变量的解释程度。

代码语言:javascript
复制
%% Variable Importance Contrast

VariableImportanceX={};
XNum=1;
% for TifFileNum=1:length(TifFileNames)
%     if ~(strcmp(TifFileNames(TifFileNum).name(4:end-4),'MaizeArea') | ...
%             strcmp(TifFileNames(TifFileNum).name(4:end-4),'MaizeYield'))
%         eval(['VariableImportanceX{1,XNum}=''',TifFileNames(TifFileNum).name(4:end-4),''';']);
%         XNum=XNum+1;
%     end
% end

for i=1:size(Input,2)
    eval(['VariableImportanceX{1,XNum}=''',i,''';']);
    XNum=XNum+1;
end

figure('Name','Variable Importance Contrast');
VariableImportanceX=categorical(VariableImportanceX);
bar(VariableImportanceX,RFModel.OOBPermutedPredictorDeltaError)
xtickangle(45);
set(gca, 'XDir','normal')
xlabel('Factor');
ylabel('Importance');

  这里代码就不再具体解释了,大家会得到一幅图,是每一个自变量对因变量的重要程度,数值越大,重要性越大。

  其中,我注释掉的这段是依据我当时的数据情况来的,大家就不用了~

更新:这里请大家注意,上述代码中我注释掉的内容,是依据每一幅图像的名称对重要性排序的X轴(也就是VariableImportanceX)加以注释(我当时做的是依据遥感图像估产,因此每一个输入变量的名称其实就是对应的图像的名称),所以使得得到的变量重要性柱状图的X轴会显示每一个变量的名称。大家用自己的数据来跑的时候,可以自己设置一个变量名称的字段元胞然后放到VariableImportanceX,然后开始figure绘图;如果在输入数据的特征个数(也就是列数)比较少的时候,也可以用我上述代码中间的这个for i=1:size(Input,2)循环——这是一个偷懒的办法,也就是将重要性排序图的X轴中每一个变量的名称显示为一个正方形,如下图红色圈内。

1.7 保存模型

  接下来,就可以将合适的模型保存。

代码语言:javascript
复制
%% RF Model Storage

RFModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0410.mat',RFModelSavePath),'nLeaf','nTree',...
    'RandomNumber','RFModel','RFPredictConfidenceInterval','RFPredictYield','RFr','RFRMSE',...
    'TestVARI','TestYield','TrainVARI','TrainYield');

  其中,RFModelSavePath是保存路径,save后的内容是需要保存的变量名称。

2 完整代码

  完整代码如下:

代码语言:javascript
复制
%% Number of Leaves and Trees Optimization
for RFOptimizationNum=1:5

RFLeaf=[5,10,20,50,100,200,500];
col='rgbcmyk';
figure('Name','RF Leaves and Trees');
for i=1:length(RFLeaf)
    RFModel=TreeBagger(2000,Input,Output,'Method','R','OOBPrediction','On','MinLeafSize',RFLeaf(i));
    plot(oobError(RFModel),col(i));
    hold on
end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error') ;
LeafTreelgd=legend({'5' '10' '20' '50' '100' '200' '500'},'Location','NorthEast');
title(LeafTreelgd,'Number of Leaves');
hold off;

disp(RFOptimizationNum);
end

%% Notification
% Set breakpoints here.

%% Cycle Preparation
RFScheduleBar=waitbar(0,'Random Forest is Solving...');
RFRMSEMatrix=[];
RFrAllMatrix=[];
RFRunNumSet=50000;
for RFCycleRun=1:RFRunNumSet

%% Training Set and Test Set Division
RandomNumber=(randperm(length(Output),floor(length(Output)*0.2)))';
TrainYield=Output;
TestYield=zeros(length(RandomNumber),1);
TrainVARI=Input;
TestVARI=zeros(length(RandomNumber),size(TrainVARI,2));
for i=1:length(RandomNumber)
    m=RandomNumber(i,1);
    TestYield(i,1)=TrainYield(m,1);
    TestVARI(i,:)=TrainVARI(m,:);
    TrainYield(m,1)=0;
    TrainVARI(m,:)=0;
end
TrainYield(all(TrainYield==0,2),:)=[];
TrainVARI(all(TrainVARI==0,2),:)=[];

%% RF
nTree=100;
nLeaf=5;
RFModel=TreeBagger(nTree,TrainVARI,TrainYield,...
    'Method','regression','OOBPredictorImportance','on', 'MinLeafSize',nLeaf);
[RFPredictYield,RFPredictConfidenceInterval]=predict(RFModel,TestVARI);
% PredictBC107=cellfun(@str2num,PredictBC107(1:end));

%% Accuracy of RF
RFRMSE=sqrt(sum(sum((RFPredictYield-TestYield).^2))/size(TestYield,1));
RFrMatrix=corrcoef(RFPredictYield,TestYield);
RFr=RFrMatrix(1,2);
RFRMSEMatrix=[RFRMSEMatrix,RFRMSE];
RFrAllMatrix=[RFrAllMatrix,RFr];
if RFRMSE<1000
    disp(RFRMSE);
    break;
end
disp(RFCycleRun);
str=['Random Forest is Solving...',num2str(100*RFCycleRun/RFRunNumSet),'%'];
waitbar(RFCycleRun/RFRunNumSet,RFScheduleBar,str);
end
close(RFScheduleBar);

%% Variable Importance Contrast
VariableImportanceX={};
XNum=1;
% for TifFileNum=1:length(TifFileNames)
%     if ~(strcmp(TifFileNames(TifFileNum).name(4:end-4),'MaizeArea') | ...
%             strcmp(TifFileNames(TifFileNum).name(4:end-4),'MaizeYield'))
%         eval(['VariableImportanceX{1,XNum}=''',TifFileNames(TifFileNum).name(4:end-4),''';']);
%         XNum=XNum+1;
%     end
% end

for i=1:size(Input,2)
    eval(['VariableImportanceX{1,XNum}=''',i,''';']);
    XNum=XNum+1;
end

figure('Name','Variable Importance Contrast');
VariableImportanceX=categorical(VariableImportanceX);
bar(VariableImportanceX,RFModel.OOBPermutedPredictorDeltaError)
xtickangle(45);
set(gca, 'XDir','normal')
xlabel('Factor');
ylabel('Importance');

%% RF Model Storage
RFModelSavePath='G:\CropYield\02_CodeAndMap\00_SavedModel\';
save(sprintf('%sRF0410.mat',RFModelSavePath),'nLeaf','nTree',...
    'RandomNumber','RFModel','RFPredictConfidenceInterval','RFPredictYield','RFr','RFRMSE',...
    'TestVARI','TestYield','TrainVARI','TrainYield');

References

[1] 博客: https://blog.csdn.net/zhebushibiaoshifu/article/details/115029033

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-04-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 疯狂学习GIS 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 分解代码
  • 1.1 最优叶子节点数与树数确定
  • 1.2 循环准备
  • 1.3 数据划分
  • 1.4 随机森林实现
  • 1.5 精度衡量
  • 1.6 变量重要程度排序
  • 1.7 保存模型
  • 2 完整代码
    • References
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档