前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据处理 | EOF用法及可视化实例

数据处理 | EOF用法及可视化实例

作者头像
郭好奇同学
发布2021-05-28 17:20:45
2.7K0
发布2021-05-28 17:20:45
举报
文章被收录于专栏:好奇心Log

EOF分析在气象分析中十分常见,幸运的是有前辈已经利用Python实现了EOF分析并且发布在github。

代码语言:javascript
复制
https://github.com/ajdawson/eofs

本文将直接介绍该库的安装及使用,关于EOF的原理不做介绍。

一、安装

代码语言:javascript
复制
conda install -c conda-forge eofs

二、使用介绍

首先import

代码语言:javascript
复制
from eofs.standard import Eof

该库有几个基本函数是必须掌握的,我们一一介绍。

代码语言:javascript
复制
solver = Eof(x, weights)
eof = solver.eofsAsCorrelation(neofs=3)
pc = solver.pcs(npcs=3, pcscaling=1)
var = solver.varianceFraction()

solver = Eof()建立一个EOF分解器,x为要进行分解的变量,weights为权重,通常指纬度权重。

solver.eofsAsCorrelation,solver.pcs,solver.varianceFraction分别取出空间模态,PC和方差。

三、示例

首先计算EOF的数据:

代码语言:javascript
复制
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.mpl.ticker as cticker
import cartopy.io.shapereader as shpreader
import xarray as xr
from eofs.standard import Eof
#读取数据
f = xr.open_dataset('./pre.nc')
pre = np.array(f['pre'])
lat = f['lat']
lon = f['lon']
#计算纬度权重
lat = np.array(lat)
coslat = np.cos(np.deg2rad(lat))
wgts = np.sqrt(coslat)[..., np.newaxis]
#创建EOF分解器
solver = Eof(summer_mean_tmp, weights=wgts)
#获取前三个模态,获取对应的PC序列和解释方差
eof = solver.eofsAsCorrelation(neofs=3)
pc = solver.pcs(npcs=3, pcscaling=1)
var = solver.varianceFraction()

以下是绘图部分,我们先给出其中不重复的部分,文章最末会给出完整代码:

代码语言:javascript
复制
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.mpl.ticker as cticker
import cartopy.io.shapereader as shpreader
import xarray as xr
from eofs.standard import Eof
#读取数据
f = xr.open_dataset('./pre.nc')
pre = np.array(f['pre'])
lat = f['lat']
lon = f['lon']
#计算纬度权重
lat = np.array(lat)
coslat = np.cos(np.deg2rad(lat))
wgts = np.sqrt(coslat)[..., np.newaxis]
#创建EOF分解器
solver = Eof(summer_mean_tmp, weights=wgts)
#获取前三个模态,获取对应的PC序列和解释方差
eof = solver.eofsAsCorrelation(neofs=3)
pc = solver.pcs(npcs=3, pcscaling=1)
var = solver.varianceFraction()

下面给出完整脚本的代码。看上去很长,但实际上大部分都是重复的:

代码语言:javascript
复制
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import cartopy.mpl.ticker as cticker
import cartopy.io.shapereader as shpreader
import xarray as xr
from eofs.standard import Eof
f = xr.open_dataset('./pre.nc')
pre = np.array(f['pre'])
lat = f['lat']
lon = f['lon']
lat = np.array(lat)
coslat = np.cos(np.deg2rad(lat))
wgts = np.sqrt(coslat)[..., np.newaxis]
solver = Eof(pre, weights=wgts)
eof = solver.eofsAsCorrelation(neofs=3)
pc = solver.pcs(npcs=3, pcscaling=1)
var = solver.varianceFraction()
color1=[]
color2=[]
color3=[]
for i in range(1961,2017):
    if pc[i-1961,0] >=0:
        color1.append('red')
    elif pc[i-1961,0] <0:
        color1.append('blue')
    if pc[i-1961,1] >=0:
        color2.append('red')
    elif pc[i-1961,1] <0:
        color2.append('blue')
    if pc[i-1961,2] >=0:
        color3.append('red')
    elif pc[i-1961,2] <0:
        color3.append('blue')
fig = plt.figure(figsize=(15,15))
proj = ccrs.PlateCarree(central_longitude=115)
leftlon, rightlon, lowerlat, upperlat = (70,140,15,55)
lon_formatter = cticker.LongitudeFormatter()
lat_formatter = cticker.LatitudeFormatter()


fig_ax1 = fig.add_axes([0.1, 0.8, 0.5, 0.3],projection = proj)
fig_ax1.set_extent([leftlon, rightlon, lowerlat, upperlat], crs=ccrs.PlateCarree())
fig_ax1.add_feature(cfeature.COASTLINE.with_scale('50m'))
fig_ax1.add_feature(cfeature.LAKES, alpha=0.5)
fig_ax1.set_xticks(np.arange(leftlon,rightlon+10,10), crs=ccrs.PlateCarree())
fig_ax1.set_yticks(np.arange(lowerlat,upperlat+10,10), crs=ccrs.PlateCarree())
fig_ax1.xaxis.set_major_formatter(lon_formatter)
fig_ax1.yaxis.set_major_formatter(lat_formatter)
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax1.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)
fig_ax1.set_title('(a) EOF1',loc='left',fontsize =15)
fig_ax1.set_title( '%.2f%%' % (var[0]*100),loc='right',fontsize =15)
c1=fig_ax1.contourf(pre_lon,pre_lat, eof[0,:,:], levels=np.arange(-0.9,1.0,0.1), zorder=0, extend = 'both',transform=ccrs.PlateCarree(), cmap=plt.cm.RdBu_r)


fig_ax2 = fig.add_axes([0.1, 0.45, 0.5, 0.3],projection = proj)
fig_ax2.set_extent([leftlon, rightlon, lowerlat, upperlat], crs=ccrs.PlateCarree())
fig_ax2.add_feature(cfeature.COASTLINE.with_scale('50m'))
fig_ax2.add_feature(cfeature.LAKES, alpha=0.5)
fig_ax2.set_xticks(np.arange(leftlon,rightlon+10,10), crs=ccrs.PlateCarree())
fig_ax2.set_yticks(np.arange(lowerlat,upperlat+10,10), crs=ccrs.PlateCarree())
fig_ax2.xaxis.set_major_formatter(lon_formatter)
fig_ax2.yaxis.set_major_formatter(lat_formatter)
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax2.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)
fig_ax2.set_title('(c) EOF2',loc='left',fontsize =15)
fig_ax2.set_title( '%.2f%%' % (var[1]*100),loc='right',fontsize =15)
c2=fig_ax2.contourf(pre_lon,pre_lat, eof[1,:,:], levels=np.arange(-0.9,1.0,0.1), zorder=0, extend = 'both',transform=ccrs.PlateCarree(), cmap=plt.cm.RdBu_r)


fig_ax3 = fig.add_axes([0.1, 0.1, 0.5, 0.3],projection = proj)
fig_ax3.set_extent([leftlon, rightlon, lowerlat, upperlat], crs=ccrs.PlateCarree())
fig_ax3.add_feature(cfeature.COASTLINE.with_scale('50m'))
fig_ax3.add_feature(cfeature.LAKES, alpha=0.5)
fig_ax3.set_xticks(np.arange(leftlon,rightlon+10,10), crs=ccrs.PlateCarree())
fig_ax3.set_yticks(np.arange(lowerlat,upperlat+10,10), crs=ccrs.PlateCarree())
fig_ax3.xaxis.set_major_formatter(lon_formatter)
fig_ax3.yaxis.set_major_formatter(lat_formatter)
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax3.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)
fig_ax3.set_title('(e) EOF3',loc='left',fontsize =15)
fig_ax3.set_title( '%.2f%%' % (var[2]*100),loc='right',fontsize =15)
c3=fig_ax3.contourf(pre_lon,pre_lat, eof[2,:,:], levels=np.arange(-0.9,1.0,0.1), zorder=0, extend = 'both',transform=ccrs.PlateCarree(), cmap=plt.cm.RdBu_r)


fig_ax11 = fig.add_axes([0.525, 0.08, 0.072, 0.15],projection = proj)
fig_ax11.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())
fig_ax11.add_feature(cfeature.COASTLINE.with_scale('50m'))
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax11.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)


fig_ax22 = fig.add_axes([0.525, 0.43, 0.072, 0.15],projection = proj)
fig_ax22.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())
fig_ax22.add_feature(cfeature.COASTLINE.with_scale('50m'))
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax22.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)


fig_ax33 = fig.add_axes([0.525, 0.78, 0.072, 0.15],projection = proj)
fig_ax33.set_extent([105, 125, 0, 25], crs=ccrs.PlateCarree())
fig_ax33.add_feature(cfeature.COASTLINE.with_scale('50m'))
china = shpreader.Reader('./bou2_4l.dbf').geometries()
fig_ax33.add_geometries(china, ccrs.PlateCarree(),facecolor='none', edgecolor='black',zorder = 1)


cbposition=fig.add_axes([0.13, 0.04, 0.4, 0.015])
fig.colorbar(c1,cax=cbposition,orientation='horizontal',format='%.1f',)


fig_ax4 = fig.add_axes([0.65, 0.808, 0.47, 0.285])
fig_ax4.set_title('(b) PC1',loc='left',fontsize = 15)
fig_ax4.set_ylim(-2.5,2.5)
fig_ax4.axhline(0,linestyle="--")
fig_ax4.bar(np.arange(1961,2017,1),pc[:,0],color=color1)


fig_ax5 = fig.add_axes([0.65, 0.458, 0.47, 0.285])
fig_ax5.set_title('(d) PC2',loc='left',fontsize = 15)
fig_ax5.set_ylim(-2.5,2.5)
fig_ax5.axhline(0,linestyle="--")
fig_ax5.bar(np.arange(1961,2017,1),pc[:,1],color=color2)


fig_ax6 = fig.add_axes([0.65, 0.108, 0.47, 0.285])
fig_ax6.set_title('(f) PC3',loc='left',fontsize = 15)
fig_ax6.set_ylim(-2.5,2.5)
fig_ax6.axhline(0,linestyle="--")
fig_ax6.bar(np.arange(1961,2017,1),pc[:,2],color=color3)


plt.show()

气海无涯众号内回复EOF数据可获得本文测试使用的数据和shp文件,方便大家练练手。EOF是领域科研最常用也是最古老的时空分离手段,很多SCI文献也都使用该方法,熟练掌握该方法是非常有必要的。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-05-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 好奇心Log 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 三、示例
  • 我们以中国夏季降水三类雨型的分解为例,展示EOF分析完整的Python实现。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档