背景: 定时每周把grafana导出的csv文件进行统计汇总工作,需要处理的csv文件比较多,干脆写个脚本,每周执行一遍脚本,既方便还不会出错。
原始文件是多个csv表格,第一列为时间戳,每10分钟统计生成一行,其余列为ip地址在该时间段内的访问次数
根据要求,统计每个ip地址在当天访问次数求和,汇总生成新表格,结果如下,并将所有csv文件按照文件名,分别汇总到不同的sheet下
主要用到了os模块中的walk()函数,可以遍历文件夹下所有的文件名。
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
pandas是python环境下最有名的数据统计包,对于数据挖掘和数据分析,以及数据清洗等工作,用pandas再合适不过了,官方地址:https://www.pypandas.cn/[1]
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
# 统计指定ip地址在指定日期的数据之和
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
# 生成新的DataFrame
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
pandas的to_excel方法也可以写入到excel文件,但是如果需要写入到指定的sheet,就无法满足需求了,此时就需要用的xlwings或者openpyxl库,此处使用xlwings,参考文档:https://www.xlwings.org/pro[2]
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
import os
import pandas as pd
import xlwings
def find_csv(path):
"""
查找目录下csv文件
:param path: 查找csv的目录路径
:return: csv文件名list
"""
csv_file = []
for root, dirs, files in os.walk(path):
for file in files:
if os.path.splitext(file)[1] == '.csv':
csv_file.append(os.path.join(root, file))
return csv_file
def summary_data(file):
"""
grafana导出的csv文件处理汇总
:param file: csv文件路径
:return: 处理完成后的pandas对象
"""
# 读取整个csv文件
csv_data = pd.read_csv(file, ';')
# 提取日期
csv_data["Time"] = csv_data["Time"].map(lambda Time: Time[0:10])
date = csv_data["Time"].drop_duplicates()
# 提取IP
ip_list = csv_data.columns.values[1:]
# 生成新列表
result_data = []
for day in list(date):
ip_data = []
for ip in ip_list:
ip_sum = csv_data.loc[csv_data['Time'] == day, ip].sum()
ip_data.append(ip_sum)
# print("日期:%s ip:%s 总计:%s" % (day, ip, ip_sum))
result_data.append(ip_data)
result_df = pd.DataFrame(result_data, index=list(date), columns=ip_list)
# 添加行列统计
result_df['day_sum'] = result_df.apply(lambda x: x.sum(), axis=1)
result_df.loc['ip_sum'] = result_df.apply(lambda x: x.sum())
print(file, "处理完毕!")
return result_df
def save_excel(data_df, file_name, excel_name):
"""
生成并写入新excel文件
:param data_df: pandas数据对象
:param file_name: 传入文件名,作为生成的sheet名称
:param excel_name: 生成excel文件名
:return: null
"""
sheet_name = file_name[file_name.rfind('/', 1) + 1:file_name.rfind('.', 1)]
wb = xlwings.Book(excel_name)
sheet = wb.sheets.add(name=sheet_name)
sheet.range("A1").value = data_df
wb.save()
wb.close()
print(sheet_name, "Sheet写入完毕!")
if __name__ == '__main__':
# 原始csv文件存放路径
path = './csv'
# 生成excel文件名
excel_name = 'cm.xlsx'
csv_file = find_csv(path)
# 创建excel文件
new_excel = pd.DataFrame()
new_excel.to_excel(excel_name)
# 处理并写入excel文件
for file in csv_file:
data_df = summary_data(file)
save_excel(data_df, file, excel_name)
# 删除默认Sheet1
wb = xlwings.Book(excel_name)
wb.sheets['Sheet1'].delete()
wb.save()
wb.close()
print("数据汇总完毕,生成文件路径 %s/%s" % (os.getcwd(), excel_name))
原文链接:www.cuiliangblog.cn[3]
[1]
Pandas: https://www.pypandas.cn/
[2]
xlwings: https://www.xlwings.org/pro
[3]
cuiliangBlog: www.cuiliangblog.cn