前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >《python深度学习》卷积神经网络的可视化

《python深度学习》卷积神经网络的可视化

作者头像
bye
发布2020-10-29 15:11:27
7600
发布2020-10-29 15:11:27
举报
文章被收录于专栏:bye漫漫求学路
代码语言:javascript
复制
import tensorflow as tf
import tensorflow.keras
tensorflow.keras.__version__
from tensorflow.keras import models
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt


model = load_model('E:/zbx_code/plantimg.h5')
model.summary()  # As a reminder.
img_path = 'E:/plant_img/resize/orig_plant_img_percent70_resize_224/potato_resize_224/1.jpg'

# We preprocess the image into a 4D tensor
img = image.load_img(img_path, target_size=(224, 224))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
# Remember that the model was trained on inputs
# that were preprocessed in the following way:
img_tensor /= 255.

# Its shape is (1, 150, 150, 3)
print(img_tensor.shape)

# plt.imshow(img_tensor[0])
# plt.show()

# Extracts the outputs of the top 8 layers:
layer_outputs = [layer.output for layer in model.layers[:8]]
# Creates a model that will return these outputs, given the model input:
activation_model = models.Model(inputs=model.input, outputs=layer_outputs)

# This will return a list of 5 Numpy arrays:
# one array per layer activation
activations = activation_model.predict(img_tensor)

# first_layer_activation = activations[0]
# print(first_layer_activation.shape)

# # plt.matshow(first_layer_activation[0, :, :, 3], cmap='viridis')
# # plt.show()

# plt.matshow(first_layer_activation[0, :, :, 2], cmap='viridis')
# plt.show()

# These are the names of the layers, so can have them as part of our plot
layer_names = []
for layer in model.layers[:8]:
    layer_names.append(layer.name)

images_per_row = 16

# Now let's display our feature maps
for layer_name, layer_activation in zip(layer_names, activations):
    # This is the number of features in the feature map
    n_features = layer_activation.shape[-1]

    # The feature map has shape (1, size, size, n_features)
    size = layer_activation.shape[1]

    # We will tile the activation channels in this matrix
    n_cols = n_features // images_per_row
    display_grid = np.zeros((size * n_cols, images_per_row * size))
    print(type(display_grid))
    # We'll tile each filter into this big horizontal grid
    for col in range(n_cols):
        for row in range(images_per_row):
            channel_image = layer_activation[0,:, :,col * images_per_row + row]
            # Post-process the feature to make it visually palatable
            channel_image -= channel_image.mean()
            channel_image /= channel_image.std()
            channel_image *= 64
            channel_image += 128
            channel_image = np.clip(channel_image, 0, 255).astype('uint8')
            print(channel_image)
            display_grid[col * size : (col + 1) * size,
                         row * size : (row + 1) * size] = channel_image
            # print(display_grid.shape[0])
    # Display the grid
    scale = 1. / size
    # print(scale*display_grid[0])
    plt.figure(figsize=(int(scale * (display_grid.shape[1])),
                        int(scale * display_grid.shape[1])))
    plt.title(layer_name)
    plt.grid(False)
    plt.imshow(display_grid, aspect='equal', cmap='viridis')
    plt.savefig('E:/featureimg/' + layer_name + '.jpg')
plt.show()

在测试这个代码的过程中,出现了以下几个问题:

(1) plt.figure(figsize=(int(scale * (display_grid.shape[1])),int(scale * display_grid.shape[0])))原始代码是这一句,用在我的图像会报错,修改成 plt.figure(figsize=(int(scale * (display_grid.shape[1])),int(scale * display_grid.shape[1])))就不报错了

Traceback (most recent call last):   File "E:\zbx_code\预训练\feature_vision.py", line 84, in <module>     int(scale * display_grid.shape[0])))   File "D:\anaconda3\envs\tensorflow\lib\site-packages\matplotlib\pyplot.py", line 546, in figure     **kwargs)   File "D:\anaconda3\envs\tensorflow\lib\site-packages\matplotlib\backend_bases.py", line 3357, in new_figure_manager     fig = fig_cls(*args, **kwargs)   File "D:\anaconda3\envs\tensorflow\lib\site-packages\matplotlib\figure.py", line 349, in __init__     raise ValueError('figure size must be positive finite not ' ValueError: figure size must be positive finite not (16, 0)

(2)    plt.imshow(display_grid, aspect='equal', cmap='viridis')这个代码中aspect是控制纵横比的,设置为equal图像会显示的大小一样,如果设置为auto图像的宽高比是不一样的。cmap是设置颜色图谱的,设置为viridis是设置为红绿蓝色。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020/09/08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档