前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python实现多分类评价指标

python实现多分类评价指标

作者头像
西西嘛呦
发布2020-09-22 10:26:38
4K0
发布2020-09-22 10:26:38
举报
文章被收录于专栏:数据分析与挖掘

1、什么是多分类?

参考:https://www.jianshu.com/p/9332fcfbd197

针对多类问题的分类中,具体讲有两种,即multiclass classification和multilabel classification。multiclass是指分类任务中包含不止一个类别时,每条数据仅仅对应其中一个类别,不会对应多个类别。multilabel是指分类任务中不止一个分类时,每条数据可能对应不止一个类别标签,例如一条新闻,可以被划分到多个板块。

无论是multiclass,还是multilabel,做分类时都有两种策略,一个是one-vs-​the-rest(one-vs-all),一个是one-vs-one。

在one-vs-all策略中,假设有n个类别,那么就会建立n个二项分类器,每个分类器针对其中一个类别和剩余类别进行分类。进行预测时,利用这n个二项分类器进行分类,得到数据属于当前类的概率,选择其中概率最大的一个类别作为最终的预测结果。

在one-vs-one策略中,同样假设有n个类别,则会针对两两类别建立二项分类器,得到k=n*(n-1)/2个分类器。对新数据进行分类时,依次使用这k个分类器进行分类,每次分类相当于一次投票,分类结果是哪个就相当于对哪个类投了一票。在使用全部k个分类器进行分类后,相当于进行了k次投票,选择得票最多的那个类作为最终分类结果​。

在scikit-learn框架中,分别有sklearn.multiclass.OneVsRestClassifier和sklearn.multiclass.OneVsOneClassifier完成两种策略,使用过程中要指明使用的二项分类器是什么。另外在进行mutillabel分类时,训练数据的类别标签Y应该是一个矩阵,第i,j个元素指明了第j个类别标签是否出现在第i个样本数据中。例如,np.array([1, 0, 0, 0, 1, 1, 0, 0, 0]),这样的一条数据,指明针对第一条样本数据,类别标签是第0个类,第二条数据,类别标签是第1,第2个类,第三条数据,没有类别标签。有时训练数据中,类别标签Y可能不是这样的可是,而是类似[2, 3, 4, 2, 0, 1, 3, 0, 1, 2, 3, 4, 0, 1, 2]这样的格式,每条数据指明了每条样本数据对应的类标号。这就需要将Y转换成矩阵的形式,sklearn.preprocessing.MultiLabelBinarizer提供了这个功能。

2、构建多个二分类器进行分类

使用的数据集是sklearn自带的iris数据集,该数据集总共有三类。

代码语言:javascript
复制
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm,datasets
from itertools import cycle

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp

# 导入鸢尾花数据集
iris = datasets.load_iris()
X = iris.data  # X.shape==(150, 4)
y = iris.target  # y.shape==(150, )

# 二进制化输出
y = label_binarize(y, classes=[0, 1, 2])  # shape==(150, 3)
n_classes = y.shape[1]  # n_classes==3

#np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
#np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
# 添加噪音特征,使问题更困难
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape  # n_samples==150, n_features==4
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]  # shape==(150, 84)
代码语言:javascript
复制
# 打乱数据集并切分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
                                                    random_state=0)
# X_train.shape==(75, 804), X_test.shape==(75, 804), y_train.shape==(75, 3), y_test.shape==(75, 3)

# 学习区分某个类与其他的类
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
                                 random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

这里提一下classifier.fit()后面接的函数:可以是decision_function()、predict_proba()、predict()

predict():返回预测标签、

predict_proba():返回预测属于某标签的概率

decision_function():返回样本到分隔超平面的有符号距离来度量预测结果的置信度

这里我们分别打印一下对应的y_score,只取前三条数据:

预测标签:[0 0 1 1 0 0...]

概率:[6.96010030e-03 1.67062907e-01 9.65745632e-01 7.00832624e-01 2.32537226e-01 4.92996070e-02...]

距离:[-1.18047012 -2.60334173 1.48134717 0.22439326 -1.15044791 -1.35488445...]

同时,我们还要注意使用到了:OneVsRestClassifier,如何理解呢?

我们可以这么看:OneVsRestClassifier实际上包含了多个分类器,有多少个类别就有多少个分类器,这里有三个类别,因此就有三个分类器,可以通过:

代码语言:javascript
复制
print(classifier.estimators_)

来查看:

代码语言:javascript
复制
[SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
    max_iter=-1, probability=True,
    random_state=RandomState(MT19937) at 0x7F480F316A98, shrinking=True,
    tol=0.001, verbose=False), 
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
    max_iter=-1, probability=True,
    random_state=RandomState(MT19937) at 0x7F480F316CA8, shrinking=True,
    tol=0.001, verbose=False), 
SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='linear',
    max_iter=-1, probability=True,
    random_state=RandomState(MT19937) at 0x7F480F316DB0, shrinking=True,
    tol=0.001, verbose=False)]

对于每一个分类器,都是二分类,即将当前的类视为一类,另外的其他类视为一类,比如说我们可以取得其中的分类器进行分类,以第一个标签为例:

代码语言:javascript
复制
y_true=np.where(y_test==1)[1]

array(2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 0, 2, 1, 1, 1, 1, 2, 0, 0, 2, 1, 0, 0, 1)

代码语言:javascript
复制
#这里重新定义标签,1代表当前标签,0代表其他标签
y0=[0 if i==0 else 1 for i in y_true]
print(y0)
print(classifier.estimators_[0].fit(X_train,y0).predict(X_test))

0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0

我们直接打印y_score中第0列的结果y_score:,0:

0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0

就是对应的第一个分类器的结果。(这里的结果不一致是因为classifier.estimators_0.fit(X_train,y0).predict(X_test)相当于有重新训练并预测了一次。

从而,y_score中的每一列都表示了每一个分类器的结果。

所以,在y_score的结果中出现了:1,1,0这种就不足为怪了。但是有个问题,如果其中有两个分类器都将某个类认为是当前类,那么这类到底属于哪一个类呢?所以不能直接就对每一个分类器的概率值取得标签值,而是要计算出每一个分类器的概率值,最后再进行映射成标签。回过头来才发现的,以下使用的是predict(),因此是有问题的,但是基本方式是差不多的,再修改就有点麻烦了,酌情阅读了= =。

多分类问题就转换为了oneVsRest问题,可以分别使用二分类评价指标了,可参考:

https://cloud.tencent.com/developer/article/1701324

比如说绘制ROC和计算AUC:

代码语言:javascript
复制
from sklearn.metrics import roc_curve, auc
# 为每个类别计算ROC曲线和AUC
fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes=3
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])
# fpr[0].shape==tpr[0].shape==(21, ), fpr[1].shape==tpr[1].shape==(35, ), fpr[2].shape==tpr[2].shape==(33, ) 
# roc_auc {0: 0.9118165784832452, 1: 0.6029629629629629, 2: 0.7859477124183007}

plt.figure()
lw = 2
for i in range(n_classes):
  plt.plot(fpr[i], tpr[i], color='darkorange',
          lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[i])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

3、多分类评价指标?

宏平均 Macro-average

Macro F1:将n分类的评价拆成n个二分类的评价,计算每个二分类的F1 score,n个F1 score的平均值即为Macro F1。

微平均 Micro-average

Micro F1:将n分类的评价拆成n个二分类的评价,将n个二分类评价的TP、FP、TN、FN对应相加,计算评价准确率和召回率,由这2个准确率和召回率计算的F1 score即为Micro F1。

对于二分类问题:

代码语言:javascript
复制
TP=cnf_matrix[1][1] #预测为正的真实标签为正
FP=cnf_matrix[0][1] #预测为正的真实标签为负
FN=cnf_matrix[1][0] #预测为负的真实标签为正
TN=cnf_matrix[0][0] #预测为负的真实标签为负
accuracy=(TP+TN)/(TP+FP+FN+TN)
precision=TP/(TP+FP)
recall=TP/(TP+FN)
f1score=2 * precision * recall/(precision + recall)

ROC曲线:

横坐标:假正率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本的比例;

FPR = FP / ( FP +TN)

纵坐标:真正率(True positive rate, TPR),这个其实就是召回率,预测为正且实际为正的样本占所有正例样本的比例。

TPR = TP / ( TP+ FN)

AUC:就是roc曲线和横坐标围城的面积。

对于上述的oneVsRest:

代码语言:javascript
复制
# 计算微平均ROC曲线和AUC
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

# 计算宏平均ROC曲线和AUC

# 首先汇总所有FPR
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# 然后再用这些点对ROC曲线进行插值
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
    mean_tpr += interp(all_fpr, fpr[i], tpr[i])

# 最后求平均并计算AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

# 绘制所有ROC曲线
plt.figure()
lw = 2
plt.plot(fpr["micro"], tpr["micro"],
         label='micro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["micro"]),
         color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
         label='macro-average ROC curve (area = {0:0.2f})'
               ''.format(roc_auc["macro"]),
         color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
    plt.plot(fpr[i], tpr[i], color=color, lw=lw,
             label='ROC curve of class {0} (area = {1:0.2f})'
             ''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()

接下来我们将分类视为一个整体:

代码语言:javascript
复制
from sklearn.metrics import confusion_matrix
classes=[0,1,2]
y_my_test=np.where(y_test==1)[1]
y_my_score=np.zeros(y_my_test.shape)
for i in range(len(classes)):
  y_my_score[np.where(y_score[:,i]==1)]=i
confusion = confusion_matrix(y_my_test, y_my_score)# 绘制热度图
plt.imshow(confusion, cmap=plt.cm.Greens)
indices = range(len(confusion))
plt.xticks(indices, classes)
plt.yticks(indices, classes)
plt.colorbar()
plt.xlabel('y_pred')
plt.ylabel('y_true')
 
# 显示数据
for first_index in range(len(confusion)):
  for second_index in range(len(confusion[first_index])):
    plt.text(first_index, second_index, confusion[first_index][second_index])
 
# 显示图片
plt.show()

我们首先要将测试标签和预测标签转换为非One-hot编码,才能计算出混淆矩阵:

计算出每一类的评价指标:

代码语言:javascript
复制
from sklearn.metrics import classification_report
t = classification_report(y_my_test, y_my_score, target_names=['0', '1', '2'])
代码语言:javascript
复制
              precision    recall  f1-score   support

           0       0.52      0.71      0.60        21
           1       0.60      0.40      0.48        30
           2       0.73      0.79      0.76        24

    accuracy                           0.61        75
   macro avg       0.62      0.64      0.61        75
weighted avg       0.62      0.61      0.60        75

如果要使用上述的值,需要这么使用:

代码语言:javascript
复制
t = classification_report(y_my_test, y_my_score, target_names=['0', '1', '2'],output_dict=True)

{'0': {'precision': 0.5172413793103449, 'recall': 0.7142857142857143, 'f1-score': 0.6000000000000001, 'support': 21}, '1': {'precision': 0.6, 'recall': 0.4, 'f1-score': 0.48, 'support': 30}, '2': {'precision': 0.7307692307692307, 'recall': 0.7916666666666666, 'f1-score': 0.76, 'support': 24}, 'accuracy': 0.6133333333333333, 'macro avg': {'precision': 0.6160035366931919, 'recall': 0.6353174603174603, 'f1-score': 0.6133333333333334, 'support': 75}, 'weighted avg': {'precision': 0.6186737400530504, 'recall': 0.6133333333333333, 'f1-score': 0.6032000000000001, 'support': 75}}

我们可以分别计算每一类的相关指标:

代码语言:javascript
复制
import sklearn
for i in range(len(classes)):
  precision=sklearn.metrics.precision_score(y_test[:,i], y_score[:,i], labels=None, pos_label=1, average='binary', 
                                sample_weight=None)
  print("{} precision:{}".format(i,precision))

也可以整体计算:

代码语言:javascript
复制
from sklearn.metrics import precision_score
print(precision_score(y_test, y_score, average="micro"))

average可选参数micro、macro、weighted

具体的计算方式可以去参考:

https://zhuanlan.zhihu.com/p/59862986

参考:

https://blog.csdn.net/hfutdog/article/details/88079934

https://blog.csdn.net/wf592523813/article/details/95202448

https://blog.csdn.net/vivian_ll/article/details/99627094

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-09-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 宏平均 Macro-average
  • 微平均 Micro-average
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档