gym的调用遵从以下的顺序
例程是一个简单的策略,杆左斜车左移,右斜则右移。
import gym
import numpy as np
env = gym.make('CartPole-v0')
t_all = []
action_bef = 0
for i_episode in range(5):
observation = env.reset()
for t in range(100):
env.render()
cp, cv, pa, pv = observation
if abs(pa)<= 0.1:
action = 1 -action_bef
elif pa >= 0:
action = 1
elif pa <= 0:
action = 0
observation, reward, done, info = env.step(action)
action_bef = action
if done:
# print("Episode finished after {} timesteps".format(t+1))
t_all.append(t)
break
if t ==99:
t_all.append(0)
env.close()
print(t_all)
print(np.mean(t_all))
一个完整的gym环境包括以下函数:类构建、初始化、
vel = np.clip(vel, vel_min, vel_max)
self.action_space.contains(action)
/usr/local/lib/python3.7/site-packages/gym/envs
from gym.envs.classic_control.myenv import MyEnv
register(
id='myenv-v0',
entry_point='gym.envs.classic_control:MyEnv,
max_episode_steps=999,
)
id = 'myenv-v0'
env = gym.make('id')
env.reset()
env.step()
env.sloce()
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有