前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Kubernetes Pod OOM 排查日记

Kubernetes Pod OOM 排查日记

作者头像
yoyofx
发布2020-08-10 14:38:23
2.6K0
发布2020-08-10 14:38:23
举报
文章被收录于专栏:ASP.NETCore

一、发现问题

在一次系统上线后,我们发现某几个节点在长时间运行后会出现内存持续飙升的问题,导致的结果就是Kubernetes集群的这个节点会把所在的Pod进行驱逐OOM;如果调度到同样问题的节点上,也会出现Pod一直起不来的问题。我们尝试了杀死Pod后手动调度的办法(label),当然也可以排除调度节点。但是在一段时间后还会复现,我们通过监控系统也排查了这段时间的流量情况,但应该和内存持续占用没有关联,这时我们意识到这可能是程序的问题。

二、现象-内存居高不下

发现个别业务服务内存占用触发告警,通过 Grafana 查看在没有什么流量的情况下,内存占用量依然拉平,没有打算下降的样子:

并且观测的这些服务,早年还只是 100MB。现在随着业务迭代和上升,目前已经稳步 4GB,容器限额 Limits 纷纷给它开道,但我想总不能是无休止的增加资源吧,这是一个很大的问题。

三、Pod频繁重启

有的业务服务,业务量小,自然也就没有调整容器限额,因此得不到内存资源,又超过额度,就会进入疯狂的重启怪圈:

重启将近 200 次,告警通知已经爆炸!

四、排查

猜想一:频繁申请重复对象

出现问题服务的业务特点,那就是基本为图片处理类的功能,例如:图片解压缩、批量生成二维码、PDF 生成等,因此就怀疑是否在量大时频繁申请重复对象,而程序本身又没有及时释放内存,因此导致持续占用。

内存池

想解决频繁申请重复对象,可以用最常见的 sync.Pool

当多个 goroutine 都需要创建同⼀个对象的时候,如果 goroutine 数过多,导致对象的创建数⽬剧增,进⽽导致 GC 压⼒增大。形成 “并发⼤-占⽤内存⼤-GC 缓慢-处理并发能⼒降低-并发更⼤”这样的恶性循环。

场景验证

在描述中关注到几个关键字,分别是并发大,Goroutine 数过多,GC 压力增大,GC 缓慢。也就是需要满足上述几个硬性条件,才可以认为是符合猜想的。

通过拉取 PProf goroutine,可得知 Goroutine 数并不高:

没有什么流量的情况下,也不符合并发大,Goroutine 数过多的情况,若要更进一步确认,可通过 Grafana 落实其量的高低。

从结论上来讲,我认为与其没有特别直接的关系,但猜想其所对应的业务功能到导致的间接关系应当存在。

猜想二:未知的内存泄露

内存居高不下,其中一个反应就是猜测是否存在泄露,而我们的容器中目前只跑着一个进程:

显然其提示的内存使用不高,也不像进程内存泄露的问题,因此也将其排除。

猜想三:容器环境的机制

既然不是业务代码影响,也不是GC影响,那是否与环境本身有关呢,我们可以得知容器 OOM 的判别标准是 container_memory_working_set_bytes(当前工作集)。

而 container_memory_working_set_bytes 是由 cadvisor 提供的,对应下述指标:

从结论上来讲,Memory 换算过来是 4GB+,石锤。接下来的问题就是 Memory 是怎么计算出来的呢,显然和 RSS 不对标。

原因

cadvisor/issues/638 可得知 container_memory_working_set_bytes 指标的组成实际上是 RSS + Cache。而 Cache 高的情况,常见于进程有大量文件 IO,占用 Cache 可能就会比较高,猜测也与 Go 版本、Linux 内核版本的 Cache 释放、回收方式有较大关系。

出问题的常见功能,如:

  • 批量图片解压缩。
  • 批量二维码生成。
  • 批量上传渲染后图片。

解决方案

在本场景中 cadvisor 所提供的判别标准 container_memory_working_set_bytes 是不可变更的,也就是无法把判别标准改为 RSS,因此我们只能考虑掌握主动权。

开发角度

使用类 sync.Pool 做多级内存池管理,防止申请到 “不合适”的内存空间,常见的例子: ioutil.ReadAll:

代码语言:javascript
复制
func (b *Buffer) ReadFrom(r io.Reader) (n int64, err error) {
    …
    for {
        if free := cap(b.buf) - len(b.buf); free < MinRead {
            newBuf := b.buf
            if b.off+free < MinRead {
                    newBuf = makeSlice(2*cap(b.buf) + MinRead)  // 扩充双倍空间
                    copy(newBuf, b.buf[b.off:])
            }
        }
    }
}

核心是做好做多级内存池管理,因为使用多级内存池,就会预先定义多个 Pool,比如大小 100,200,300的 Pool 池,当你要 150 的时候,分配200,就可以避免部分的内存碎片和内存碎块。

但从另外一个角度来看这存在着一定的难度,因为你怎么知道什么时候在哪个集群上会突然出现这类型的服务,何况开发人员的预期情况参差不齐,写多级内存池写出 BUG 也是有可能的。

让业务服务无限重启,也是不现实的,被动重启,没有控制,且告警,存在风险

运维角度

可以使用定期重启的常用套路。可以在部署环境可以配合脚本做 HPA,当容器内存指标超过约定限制后,起一个新的容器替换,再将原先的容器给释放掉,就可以在预期内替换且业务稳定了。

总结

根据上述排查和分析结果,原因如下:

  • 应用程序行为:文件处理型服务,导致 Cache 占用高。
  • Linux 内核版本:版本比较低(BUG?),不同 Cache 回收机制。
  • 内存分配机制:在达到 cgroup limits 前会尝试释放,但可能内存碎片化,也可能是一次性索要太多,无法分配到足够的连续内存,最终导致 cgroup oom。

从根本上来讲,应用程序需要去优化其内存使用和分配策略,又或是将其抽离为独立的特殊服务去处理。并不能以目前这样简单未经多级内存池控制的方式去使用,否则会导致内存使用量越来越大。

而从服务提供的角度来讲,我们并不知道这类服务会在什么地方出现又何时会成长起来,因此我们需要主动去控制容器的 OOM,让其实现优雅退出,保证业务稳定和可控。

最后

最近在写基于Golang的工具和框架,还请多多Star. YoyoGo 是一个用 Go 编写的简单,轻便,快速的 微服务框架,目前已实现了Web框架的能力,但是底层设计已支持多种服务架构。

Github

https://github.com/yoyofx/yoyogo https://github.com/yoyofxteam

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2020-08-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、发现问题
  • 二、现象-内存居高不下
    • 三、Pod频繁重启
    • 四、排查
      • 猜想一:频繁申请重复对象
        • 内存池
        • 场景验证
      • 猜想二:未知的内存泄露
        • 猜想三:容器环境的机制
        • 原因
        • 解决方案
          • 开发角度
            • 运维角度
            • 总结
            • 最后
            • Github
            相关产品与服务
            容器服务
            腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档