图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。
1、均值滤波/方框滤波、高斯滤波的原理
2、OpenCV代码实践
3、动手实践并打卡(读者完成)
1. 滤波分类
线性滤波: 对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。
非线性滤波: 非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。
2. 方框(盒子)滤波
方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。 应用: 可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。
优势: 就一个字:快!它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。
在原理上,是采用一个卷积核与图像进行卷积:
其中:
可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。
3. 均值滤波
均值滤波的应用场合: 根据冈萨雷斯书中的描述,均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。
均值滤波的缺陷: 均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。
均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:
g(x,y)为该邻域的中心像素,n跟系数模版大小有关,一般3*3邻域的模板,n取为9,如:
当然,模板是可变的,一般取奇数,如5 * 5 , 7 * 7等等。
注:在实际处理过程中可对图像边界进行扩充,扩充为0或扩充为邻近的像素值。
应用: 高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。
高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。
二维高斯分布 高斯分布公式终于要出场了!
其中不必纠结于系数,因为它只是一个常数!并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们是忽略它而只计算后半部分:
在这里插入图片描述
其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。
例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。 对于窗口模板的大小为 (2k+1)×(2k+1),模板中各个元素值的计算公式如下:
这样计算出来的模板有两种形式:小数和整数。
生成高斯掩膜(小数形式) 知道了高斯分布原理,实现起来也就不困难了。
首先我们要确定我们生产掩模的尺寸wsize,然后设定高斯分布的标准差。生成的过程,我们首先根据模板的大小,找到模板的中心位置center。 然后就是遍历,根据高斯分布的函数,计算模板中每个系数的值。
最后模板的每个系数要除以所有系数的和。这样就得到了小数形式的模板。
///////////////////////////////
//x,y方向联合实现获取高斯模板
//////////////////////////////
void generateGaussMask(cv::Mat& Mask,cv::Size wsize, double sigma){
Mask.create(wsize,CV_64F);
int h = wsize.height;
int w = wsize.width;
int center_h = (h - 1) / 2;
int center_w = (w - 1) / 2;
double sum = 0.0;
double x, y;
for (int i = 0; i < h; ++i){
y = pow(i - center_h, 2);
for (int j = 0; j < w; ++j){
x = pow(j - center_w, 2);
//因为最后都要归一化的,常数部分可以不计算,也减少了运算量
double g = exp(-(x + y) / (2 * sigma*sigma));
Mask.at<double>(i, j) = g;
sum += g;
}
}
Mask = Mask / sum;
}
3×3,σ=0.8的小数型模板:
在这里插入图片描述
σ的意义及选取 通过上述的实现过程,不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σ。标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。
来看下一维高斯分布的概率分布密度图:
image
于是我们有如下结论:σ越小分布越瘦高,σ越大分布越矮胖。
import numpy as np
import cv2
import matplotlib.pyplot as plt
######## 四个不同的滤波器 #########
img = cv2.imread('cat.jpg')
# 均值滤波
img_mean = cv2.blur(img, (5,5))
# 高斯滤波
img_Guassian = cv2.GaussianBlur(img,(5,5),0)
# 中值滤波
img_median = cv2.medianBlur(img, 5)
# 双边滤波
img_bilater = cv2.bilateralFilter(img,9,75,75)
# 展示不同的图片
titles = ['srcImg','mean', 'Gaussian', 'median', 'bilateral']
imgs = [img, img_mean, img_Guassian, img_median, img_bilater]
for i in range(5):
plt.subplot(2,3,i+1)#注意,这和matlab中类似,没有0,数组下标从1开始
plt.imshow(imgs[i])
plt.title(titles[i])
plt.show()
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有