前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >最准的中文文本相似度计算工具

最准的中文文本相似度计算工具

作者头像
机器学习AI算法工程
发布2020-04-08 15:45:56
14.4K2
发布2020-04-08 15:45:56
举报
文章被收录于专栏:机器学习AI算法工程

text2vec, chinese text to vetor.(文本向量化表示工具,包括词向量化、句子向量化)

本文相关代码 获取

关注微信公众号 datayx 然后回复 文本相似似度 即可获取。

AI项目体验地址 https://loveai.tech

Feature

文本向量表示

  • 字词粒度,通过腾讯AI Lab开源的大规模高质量中文词向量数据(800万中文词),获取字词的word2vec向量表示。

https://ai.tencent.com/ailab/nlp/embedding.html

  • 句子粒度,通过求句子中所有单词词嵌入的平均值计算得到。
  • 篇章粒度,可以通过gensim库的doc2vec得到,应用较少,本项目不实现。

文本相似度计算

  • 基准方法,估计两句子间语义相似度最简单的方法就是求句子中所有单词词嵌入的平均值,然后计算两句子词嵌入之间的余弦相似性。
  • 词移距离(Word Mover’s Distance),词移距离使用两文本间的词嵌入,测量其中一文本中的单词在语义空间中移动到另一文本单词所需要的最短距离。

query和docs的相似度比较

  • rank_bm25方法,使用bm25的变种算法,对query和文档之间的相似度打分,得到docs的rank排序。

Result

文本相似度计算
  • 基准方法

尽管文本相似度计算的基准方法很简洁,但用平均词嵌入之间求余弦相似度的表现非常好。实验有以下结论:

  • 词移距离

基于我们的结果,好像没有什么使用词移距离的必要了,因为上述方法表现得已经很好了。只有在STS-TEST数据集上,而且只有在有停止词列表的情况下,词移距离才能和简单基准方法一较高下。

Usage:

output:

get similarity score between text1 and text2

代码语言:javascript
复制
from text2vec import Similarity

a = '如何更换花呗绑定银行卡'
b = '花呗更改绑定银行卡'

sim = Similarity()
s = sim.get_score(a, b)
print(s)

get text similarity score between query and docs


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-04-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习AI算法工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Feature
  • 文本向量表示
    • 文本相似度计算
    • Usage:
    相关产品与服务
    NLP 服务
    NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档