前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >KNN算法及python实现

KNN算法及python实现

作者头像
Flaneur
发布2020-03-25 11:17:26
1.5K0
发布2020-03-25 11:17:26
举报
文章被收录于专栏:Flaneur的文章分享

前言

        KNN算法即K-Nearest Neighbor,也是机器学习十大经典算法之一。前文讲解了K-means算法,今天我们就继续讲KNN算法,两者看起来挺相似的,但区别还是很大的,看完本片文章你就会明白了。

一、引入

问题:确定绿色圆是属于红色三角形、还是蓝色正方形?

KNN的思想:         从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。         如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形         如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形         即如果一个样本在特征空间中的k个最相邻的样本中,大多数属于某一个类别,则该样本也属于这个类别。我们可以看到,KNN本质是基于一种数据统计的方法!其实很多机器学习算法也是基于数据统计的。

二、KNN算法

1.介绍

        KNN即K-最近邻分类算法(K-Nearest Neighbor),是一种memory-based learning,也叫instance-based learning,属于lazy learning。即它没有明显的前期训练过程,而是程序开始运行时,把数据集加载到内存后,不需要进行训练,就可以开始分类了。         KNN也是一种监督学习算法,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离最近的邻居进行分类判(投票法)或者回归。若K=1,新数据被简单分配给其近邻的类。

2.步骤

1)计算测试数据与各个训练数据之间的距离;

(计算距离的方式前文讲k-means时说过,不清楚的可以去查看以下➡传送门)

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

K值是由自己来确定的

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

说明:对于步骤5的预测分类有以下两种方法

  1. 多数表决法:多数表决法类似于投票的过程,也就是在 K 个邻居中选择类别最多的种类作为测试样本的类别。
  2. 加权表决法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大,通过权重计算结果最大值的类为测试样本的类别。

特点

1) 非参数统计方法:不需要引入参数 2) K的选择:         K = 1时,将待分类样本划入与其最接近的样本的类。         K = |X|时,仅根据训练样本进行频率统计,将待分类样本划入最多的类。 K需要合理选择,太小容易受干扰,太大增加计算复杂性。 3) 算法的复杂度:维度灾难,当维数增加时,所需的训练样本数急剧增加,一般采用降维处理。

三、算法优缺点

优点

  1. 简单、有效。
  2. 重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。
  3. 计算时间和空间线性于训练集的规模(在一些场合不算太大)。
  4. 由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
  5. 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

缺点

  1. KNN算法是懒散学习方法(lazy learning),而一些积极学习的算法要快很多。
  2. 需要存储全部的训练样本
  3. 输出的可解释性不强,例如决策树的可解释性较强。
  4. 该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算最近的邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
  5. 计算量较大。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

四、KNN与K-means的区别

        废话不多说,咱直接上图:

相似点:         虽然两者有很大且别,但两者也有共同之处。都包含了一个过程:给定一个点,在数据集找离它最近的点,即都用到了NN(Nearest Neighbor)算法。

五、python实例实现

        下面引入一个实例,通过python代码具体看下KNN算法的流程。

代码语言:javascript
复制
from numpy import *
import operator

dataSet = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']

def classify0(inX,dataSet,labels,k):

    #求出样本集的行数,也就是labels标签的数目
    dataSetSize = dataSet.shape[0]

    #构造输入值和样本集的差值矩阵
    diffMat = tile(inX,(dataSetSize,1)) - dataSet

    #计算欧式距离
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances**0.5

    #求距离从小到大排序的序号
    sortedDistIndicies = distances.argsort()

    #对距离最小的k个点统计对应的样本标签
    classCount = {}
    for i in range(k):
        #取第i+1邻近的样本对应的类别标签
        voteIlabel = labels[sortedDistIndicies[i]]
        #以标签为key,标签出现的次数为value将统计到的标签及出现次数写进字典
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1

    #对字典按value从大到小排序
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)

    #返回排序后字典中最大value对应的key
    return sortedClassCount[0][0]
if __name__ == '__main__':
    print(classify0([1.1,0],dataSet,labels,3))
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019-07-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 一、引入
  • 二、KNN算法
    • 1.介绍
      • 2.步骤
        • 特点
        • 三、算法优缺点
          • 优点
            • 缺点
            • 四、KNN与K-means的区别
            • 五、python实例实现
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档