前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Pyecharts可视化分享】杭州步行热门路线等~

【Pyecharts可视化分享】杭州步行热门路线等~

作者头像
Awesome_Tang
发布2020-02-25 16:13:26
6380
发布2020-02-25 16:13:26
举报
文章被收录于专栏:FSociety

前言

本文包括内容如下:

  • 杭州步行热门路线
  • 渐变效果散点图

均是Echarts官方提供等示例,本文将会通过Pyecharts来进行实现。

杭州步行热门路线

完整代码
代码语言:javascript
复制
from pyecharts import options as opts
from pyecharts.charts import BMap
from pyecharts.globals import ChartType, SymbolType, ThemeType
import requests

# 通过requests获取数据
r = requests.get('https://echarts.baidu.com/examples/data/asset/data/hangzhou-tracks.json')
data = r.json()

data_pair = []

# 新建一个BMap对象
bmap = BMap()

for i, item in enumerate([j for i in data for j in i ]):
    # 新增坐标点
    bmap.add_coordinate(i, item['coord'][0], item['coord'][1])
    data_pair.append((i, 1)) 

bmap.add_schema(
    # 需要申请一个AK
    baidu_ak='VtTfLEPhrSmI34foXXozmE441uDOSA7V',
    # 地图缩放比例
    zoom=14, 
    # 显示地图中心坐标点
    center=[120.13066322374, 30.240018034923])

# 添加数据
bmap.add("门店数", data_pair,
         type_='heatmap')

# 数据标签不显示
bmap.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
bmap.set_global_opts(
    visualmap_opts=opts.VisualMapOpts(min_=0, max_=50, 
                                      # 颜色效果借用Echarts示例效果
                                      range_color=['blue', 'blue', 'green', 'yellow', 'red']),
    # 图例不显示
    legend_opts=opts.LegendOpts(is_show=False),
    title_opts=opts.TitleOpts(title="杭州热门步行路线"))

# notebook中渲染
# 其他运行环境使用bmap.render()
bmap.render_notebook()
实现效果

image

渐变效果散点图

完整代码
代码语言:javascript
复制
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.globals import ThemeType
from pyecharts.commons.utils import JsCode

# 人均寿命于GDP
data = [[[28604,77,17096869,'Australia',1990],[31163,77.4,27662440,'Canada',1990],[1516,68,1154605773,'China',1990],[13670,74.7,10582082,'Cuba',1990],[28599,75,4986705,'Finland',1990],[29476,77.1,56943299,'France',1990],[31476,75.4,78958237,'Germany',1990],[28666,78.1,254830,'Iceland',1990],[1777,57.7,870601776,'India',1990],[29550,79.1,122249285,'Japan',1990],[2076,67.9,20194354,'North Korea',1990],[12087,72,42972254,'South Korea',1990],[24021,75.4,3397534,'New Zealand',1990],[43296,76.8,4240375,'Norway',1990],[10088,70.8,38195258,'Poland',1990],[19349,69.6,147568552,'Russia',1990],[10670,67.3,53994605,'Turkey',1990],[26424,75.7,57110117,'United Kingdom',1990],[37062,75.4,252847810,'United States',1990]],
    [[44056,81.8,23968973,'Australia',2015],[43294,81.7,35939927,'Canada',2015],[13334,76.9,1376048943,'China',2015],[21291,78.5,11389562,'Cuba',2015],[38923,80.8,5503457,'Finland',2015],[37599,81.9,64395345,'France',2015],[44053,81.1,80688545,'Germany',2015],[42182,82.8,329425,'Iceland',2015],[5903,66.8,1311050527,'India',2015],[36162,83.5,126573481,'Japan',2015],[1390,71.4,25155317,'North Korea',2015],[34644,80.7,50293439,'South Korea',2015],[34186,80.6,4528526,'New Zealand',2015],[64304,81.6,5210967,'Norway',2015],[24787,77.3,38611794,'Poland',2015],[23038,73.13,143456918,'Russia',2015],[19360,76.5,78665830,'Turkey',2015],[38225,81.4,64715810,'United Kingdom',2015],[53354,79.1,321773631,'United States',2015]]]

scatter = (Scatter()
           .add_xaxis([i[0] for i in data[0]])
           .add_yaxis("1990年", [[i[1],i[3], i[2]] for i in data[0]],
                      # 渐变效果实现部分
                      color=JsCode("""new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(251, 118, 123)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(204, 46, 72)'
                                    }])"""))
           .add_yaxis("2015年", [[i[1],i[3], i[2]]  for i in data[1]], 
                      # 渐变效果实现部分
                      color=JsCode("""new echarts.graphic.RadialGradient(0.4, 0.3, 1, [{
                                        offset: 0,
                                        color: 'rgb(129, 227, 238)'
                                    }, {
                                        offset: 1,
                                        color: 'rgb(25, 183, 207)'
                                    }])"""))
           .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
           .set_global_opts(
               title_opts=opts.TitleOpts(title="1990 与 2015 年各国家人均寿命与 GDP"),
               tooltip_opts = opts.TooltipOpts(
                   # 通过执行js代码实现提示显示为国家
                   formatter=JsCode("function (param) {return param.data[2];}")),
               xaxis_opts=opts.AxisOpts(
                   # 设置坐标轴为数值类型
                   type_="value", 
                   # 显示分割线
                   splitline_opts=opts.SplitLineOpts(is_show=True)),
               yaxis_opts=opts.AxisOpts(
                   # 设置坐标轴为数值类型
                   type_="value",
                   # 默认为False表示起始为0
                   is_scale=True,
                   splitline_opts=opts.SplitLineOpts(is_show=True),),
               # 数据中第三个度量值通过图形的size来展示
               visualmap_opts=opts.VisualMapOpts(is_show=False, type_='size', min_=20194354, max_=1154605773)
    ))

scatter.render_notebook() 
实现效果

image


本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 杭州步行热门路线
    • 完整代码
      • 实现效果
      • 渐变效果散点图
        • 完整代码
          • 实现效果
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档