InceptionResNetV2 迁移学习
谷歌开放了 Inception-ResNet-v2,这是一个在 ILSVRC 图像分类基准上取得顶尖准确率的卷积神经网络。Inception-ResNet-v2 是早期发布的 Inception V3 模型的变体,该模型借鉴了微软 ResNet 论文中的思路。具体内容可在我们的论文:Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 中看到。
残差连接(Residual connections )允许模型中进行 shortcut,也使得研究员能成功的训练更深的神经网络从而产生更好的性能。这也使得 Inception 块的极度简单化成为可能。
举个例子,Inception V3 和 Inception-ResNet-v2 模型在识别犬种上都很擅长,但新模型做的更好。例如,旧模型错误报告右图中的狗是阿拉斯加雪橇犬,而新的 Inception-ResNet-v2 模型准确识别了两张图片中的狗的种类。
应用Inception-ResNet-v2 预训练模型做迁移学习做人民币面值识别
AI项目体验地址 https://loveai.tech
Found 31692 images belonging to 9 classes.
Found 7928 images belonging to 9 classes.
Found 20000 images.
#生成了2个提交文件,可以提交在线测试(在模型收敛的情况下,2个文件大概率是一模一样)
train_raw()
396/396 [==============================] - 953s 2s/step -