前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从Q-Learning到A3C 强化学习基础快速复习

从Q-Learning到A3C 强化学习基础快速复习

作者头像
CreateAMind
发布2019-07-17 16:58:15
6730
发布2019-07-17 16:58:15
举报
文章被收录于专栏:CreateAMind

PS:

Useful resources

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

policy gradient:

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#a2c

A3C:

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

PS:

Dueling DQN implement by tensorflow:

代码语言:javascript
复制
with tf.name_scope("Conv_net"):
    for i, (out_size, kernel, stride) in enumerate(filters[:-1], 1):
        inputs = tf.layers.conv2d(
            inputs,
            out_size,
            kernel,
            stride,
            activation=tf.nn.relu,
            padding="VALID",
            name="conv{}".format(i))
        out_size, kernel, stride = filters[-1]

        conv3 = tf.layers.conv2d(
            inputs,
            out_size,
            kernel,
            stride,
            activation=tf.nn.relu,
            padding="valid",
            name="conv3")

conv3_flat = tf.layers.flatten(conv3)

with tf.name_scope("fc_net"):
    # label = "fcn{}".format(i)
    fcn4 = tf.layers.dense(
        conv3_flat,
        512,
        kernel_initializer=normc_initializer(1.0),
        activation=tf.nn.relu,
        name="fcn4v")
    fcnv = tf.layers.dense(
        fcn4,
        units=1,
        kernel_initializer=normc_initializer(1.0),
        activation=None,
        name="fcnv")
    fcna = tf.layers.dense(
        fcn4,
        units=num_outputs,
        kernel_initializer=normc_initializer(1.0),
        activation=None,
        name="fcna")

q_values = fcnv + tf.subtract(fcna, tf.reduce_mean(fcna, axis=1, keepdims=True))
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-07-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CreateAMind 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Useful resources
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档