前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >0基础大数据开发Hadoop要学习什么内容?

0基础大数据开发Hadoop要学习什么内容?

作者头像
加米谷大数据
发布2019-06-05 18:44:57
6100
发布2019-06-05 18:44:57
举报
文章被收录于专栏:加米谷大数据

Hadoop是Apache开源组织的一个分布式基础框架,提供了一个分布式文件系统 (HDFS)、分布式计算(MapReduce)及统一资源管理框架(YARN)的软件架构。

简介

Hadoop是用Java语言开发的一个开源分布式计算平台,适合大数据的分布式存储和计算平台。

Hadoop框架核心的设计是:HDFS、MapReduce、YARN。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算,YARN为计算程序提供资源调度服务。

主要组件

1)HDFS(Hadoop Distribute File System):

分布式文件系统,提供对应用程序数据的高吞吐量,高伸缩性,高容错性的访问。Hadoop体系中数据存储管理的基础。

2)MapReduce

分布式计算模型,由Map和Reduce组成,用以进行大数据量的计算。MapReduce分为两个阶段:Map阶段,Reduce阶段,其中Map阶段为映射,Reduce阶段是规约。适合在大量计算机组成的分布式并行环境里进行数据处理。

3)YARN(Yet Another Resource Negotiator):

分布式资源管理器,职能是将资源调度和任务调度分开。最大的特点是执行调度与Hadoop上运行的任务类型无关。Yarn可在Hadoop上执行除MapReduce以外的工作,其核心是分布式调度程序。

其他模块(部分)

4)HBase:是一个基于HDFS之上的高可靠、高性能、面向列、可伸缩的分布式NoSQL数据库。

5)Hive:是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。

6)Zookeeper:一个分布式的,开放源码的分布式应用程序协调服务。提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

7)FlumeNG:是一个分布式、高可靠的数据采集系统,能够将不同数据源的海量日志数据进行高效收集、聚合、移动,最后存储到一个中心化数据存储系统中。

8)Sqoop:是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可将一个关系型数据库中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。

Hadoop在大数据技术体系中的地位至关重要,Hadoop是大数据技术的基础,对Hadoop基础知识的掌握的扎实程度,会决定在大数据技术道路上走多远。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-05-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 加米谷大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档