前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单易学的机器学习算法——协同过滤推荐算法(1)

简单易学的机器学习算法——协同过滤推荐算法(1)

作者头像
felixzhao
发布2019-02-13 17:53:41
5240
发布2019-02-13 17:53:41
举报
文章被收录于专栏:null的专栏

一、推荐系统的概念

    推荐系统(Recommendation System, RS),简单来说就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。举个简单的例子,在京东商城,我们浏览一本书之后,系统会为我们推荐购买了这本书的其他用户购买的其他的书:

推荐系统在很多方面都有很好的应用,尤其在现在的个性化方面发挥着重要的作用。

二、推荐系统的分类

    推荐系统使用了一系列不同的技术,主要可以分为以下两类:

  • 基于内容(content-based)的推荐。主要依据的是推荐项的性质。
  • 基于协同过滤(collaborative filtering)的推荐。主要依据的是用户或者项之间的相似性。

    在协同过滤方法中,我们很显然的会发现,基于协同过滤的推荐系统用可以分为两类:

  • 基于项(item-based)的推荐系统。主要依据的是项与项之间的相似性。
  • 基于用户(user-based)的推荐系统。主要依据的是用户与用户之间的相似性。

三、相似度的度量方法

    相似性的度量的方法有很多种,不同的度量方法的应用范围也不一样。相似性度量方法的设计也是机器学习算法设计中很重要的一部分,尤其是对于聚类算法,推荐系统这类算法。

    相似性的度量方法必须满足拓扑学中的度量空间的基本条件:

假设

是度量空间

上的度量:

,其中度量

满足:

  • 非负性:

,当且仅当

时取等号;

  • 对称性:

  • 三角不等性:

    这里主要介绍三种相似性的度量方法:欧式距离、皮尔逊相关系数和余弦相似度。

1、欧式距离

   欧式距离是使用较多的相似性的度量方法,在kMeans中就使用到欧式距离作为相似项的发现。

2、皮尔逊相关系数(Pearson Correlation)

   在欧氏距离的计算中,不同特征之间的量级对欧氏距离的影响比较大,例如

,我们就不能很好的利用欧式距离判断

之间的相似性的大小。而皮尔逊相似性的度量对量级不敏感:

其中

表示向量

和向量

内积,

表示向量

的二范数。

3、余弦相似度(Cosine Similarity)

   余弦相似度有着与皮尔逊相似度同样的性质,对量级不敏感,是计算两个向量的夹角。在吴军老师的《数学之美》上,在计算文本相似性的过程中,大量使用了余弦相似性的度量方法。

四、基于相似度的推荐系统

    协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的。我们通过一个评分系统对基于协同过滤的推荐系统作阐述。

(不同用户对不同商品的评分)

如图,横轴为每个用户对不同商品的评分,评分的范围为1~5,0表示该用户未对该商品评分。我们以用户Tracy为例,Tracy未对日式炸鸡排和寿司饭评分,我们利用协同过滤推荐系统预测Tracy对该两个商品评分,并依据分数的高低向Tracy推荐商品。

1、计算相似度

   在本例中,我们是依据物品的相似度,即计算日式炸鸡排与鳗鱼饭、烤牛肉和手撕猪肉的相似度实现对日式炸鸡排的评分,用同样的方法对寿司饭评分。

2、排序

   排序的目的是实现在日式炸鸡排与寿司饭这两个商品中推荐给用户Tracy。

3、实验结果

(相似度的计算——基于余弦相似度)

(推荐结果)

从推荐结果,我们发现寿司饭的评分更高,首推寿司饭,日式炸鸡排排在寿司饭后面。

4、MATLAB代码

主程序

代码语言:javascript
复制
%% 主函数

% 导入数据
data = [4,4,0,2,2;4,0,0,3,3;4,0,0,1,1;1,1,1,2,0;2,2,2,0,0;1,1,1,0,0;5,5,5,0,0];

% reccomendation
[sortScore, sortIndex] = recommend(data, 3, 'cosSim');

len = size(sortScore);

finalRec = [sortIndex, sortScore];
disp(finalRec);

计算相似度的函数

代码语言:javascript
复制
function [ score ] = evaluate( data, user, simMeas, item )
    [m,n] = size(data);
    simTotal = 0;
    ratSimTotal = 0;
    
    % 寻找用户都评价的商品
    % data(user, item)为未评价的商品
    for j = 1:n
        userRating = data(user, j);%此用户评价的商品
        ratedItem = zeros(m,1);
        numOfNon = 0;%统计已评价商品的数目
        if userRating == 0%只是找到已评分的商品
            continue;
        end
        for i = 1:m
            if data(i,item) ~= 0 && data(i,j) ~= 0
                ratedItem(i,1) = 1;
                numOfNon = numOfNon + 1;
            end
        end
        
        % 判断有没有都评分的项
        if numOfNon == 0
            similarity = 0;
        else
            % 构造向量,便于计算相似性
            vectorA = zeros(1,numOfNon);
            vectorB = zeros(1,numOfNon);
            r = 0;
            for i = 1:m
                if ratedItem(i,1) == 1
                    r = r+1;
                    vectorA(1,r) = data(i, j);
                    vectorB(1,r) = data(i, item);
                end
            end
            switch simMeas
                case {'cosSim'}
                    similarity = cosSim(vectorA,vectorB);
                case {'ecludSim'}
                    similarity = ecludSim(vectorA,vectorB);
                case {'pearsSim'}
                    similarity = pearsSim(vectorA,vectorB);
            end
        end
        disp(['the ', num2str(item), ' and ', num2str(j), ' similarity is ', num2str(similarity)]);
        simTotal = simTotal + similarity;
        ratSimTotal = ratSimTotal + similarity * userRating;
    end
    if simTotal == 0
        score = 0;
    else
        score = ratSimTotal./simTotal;
    end
end

推荐函数

代码语言:javascript
复制
function [ sortScore, sortIndex ] = recommend( data, user, simMeas )
    % 获取data的大小
    [m, n] = size(data);%m为用户,n为商品
    if user > m
        disp('The user is not in the dataBase');
    end
    
    % 寻找用户user未评分的商品
    unratedItem = zeros(1,n);
    numOfUnrated = 0;
    for j = 1:n
        if data(user, j) == 0
            unratedItem(1,j) = 1;%0表示已经评分,1表示未评分
            numOfUnrated = numOfUnrated + 1;
        end
    end
    
    if numOfUnrated == 0
        disp('the user has rated all items');
    end
    
    % 对未评分项打分,已达到推荐的作用
    itemScore = zeros(numOfUnrated,2);
    r = 0;
    for j = 1:n
        if unratedItem(1,j) == 1%找到未评分项
            r = r + 1;
            score = evaluate(data, user, simMeas, j);
            itemScore(r,1) = j;
            itemScore(r,2) = score;
        end
    end
    %排序,按照分数的高低进行推荐
    [sortScore, sortIndex_1] = sort(itemScore(:,2),'descend');
    [numOfIndex,x] = size(sortIndex_1(:,1));
    sortIndex = zeros(numOfIndex,1);
    for m = 1:numOfIndex
        sortIndex(m,:) = itemScore(sortIndex_1(m,:),1);
    end
end

相似度的函数:

  • 欧式距离函数
代码语言:javascript
复制
function [ ecludSimilarity ] = ecludSim( vectorA, vectorB )
    ecludSimilarity = 1./(1 + norm(vectorA - vectorB));
end
  • 皮尔逊相关系数函数
代码语言:javascript
复制
function [ pearsSimilarity ] = pearsSim( vectorA, vectorB )
    pearsSimilarityMatrix = 0.5 + 0.5 * corrcoef(vectorA, vectorB);
    pearsSimilarity = pearsSimilarityMatrix(1,2);
end
  • 余弦相似度函数
代码语言:javascript
复制
function [ cosSimilarity ] = cosSim( vectorA, vectorB )
    %注意vectorA和vectorB都是行向量
    num = vectorA * vectorB';
    denom = norm(vectorA) * norm(vectorB);
    cosSimilarity = 0.5 + 0.5 * (num./denom);
end
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2014年06月02日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、推荐系统的概念
  • 二、推荐系统的分类
  • 三、相似度的度量方法
    • 1、欧式距离
      • 2、皮尔逊相关系数(Pearson Correlation)
        • 3、余弦相似度(Cosine Similarity)
        • 四、基于相似度的推荐系统
          • 1、计算相似度
            • 2、排序
              • 3、实验结果
                • 4、MATLAB代码
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档