前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聊聊storm trident batch的分流与聚合

聊聊storm trident batch的分流与聚合

原创
作者头像
code4it
发布2018-11-17 23:54:53
1.3K0
发布2018-11-17 23:54:53
举报
文章被收录于专栏:码匠的流水账

本文主要研究一下storm trident batch的分流与聚合

实例

代码语言:javascript
复制
        TridentTopology topology = new TridentTopology();
        topology.newStream("spout1", spout)
                .partitionBy(new Fields("user"))
                .partitionAggregate(new Fields("user","score","batchId"),new OriginUserCountAggregator(),new Fields("result","aggBatchId"))
                .parallelismHint(3)
                .global()
                .aggregate(new Fields("result","aggBatchId"),new AggAgg(),new Fields("agg"))
                .each(new Fields("agg"),new PrintEachFunc(),new Fields())
        ;
  • 这里最后构造了3个bolt,分别为b-0、b-1、b-2
  • b-0主要是partitionAggregate,它的parallelismHint为3
  • b-1主要是处理CombinerAggregator的init,它的parallelismHint为1,由于它的上游bolt有3个task,因而它的TridentBoltExecutor的tracked.condition.expectedTaskReports为3,它要等到这三个task的聚合数据都到了之后,才能finishBatch
  • b-2主要是处理CombinerAggregator的combine以及each操作
  • 整个数据流从spout开始的一个batch,到了b-0通过partitionBy分流为3个子batch,到了b-1则聚合了3个子batch之后才finishBatch,到了b-2则在b-1聚合之后的结果在做最后的聚合

log实例

代码语言:javascript
复制
23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt1, 1]
23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt2, 1]
23:22:00.718 [Thread-49-spout-spout1-executor[11 11]] INFO  com.example.demo.trident.batch.DebugFixedBatchSpout - batchId:1,emit:[nickt3, 1]
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt2, 1, 1]
23:22:00.720 [Thread-45-b-0-executor[8 8]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt2=1}}
23:22:00.722 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null init map, aggBatchId:1:0
23:22:00.723 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt1, 1, 1]
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null aggregate batch:1,tuple:[nickt3, 1, 1]
23:22:00.723 [Thread-22-b-0-executor[7 7]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt1=1}}
23:22:00.723 [Thread-29-b-0-executor[6 6]] INFO  com.example.demo.trident.OriginUserCountAggregator - null complete agg batch:1:0,val:{1={nickt3=1}}
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - zero called
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt2=1}}, 1:0]
23:22:00.724 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{},val2:{1={nickt2=1}}
23:22:00.726 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt3=1}}, 1:0]
23:22:00.727 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{1={nickt2=1}},val2:{1={nickt3=1}}
23:22:00.728 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - init tuple:[{1={nickt1=1}}, 1:0]
23:22:00.728 [Thread-36-b-1-executor[9 9]] INFO  com.example.demo.trident.AggAgg - combine val1:{1={nickt3=1, nickt2=1}},val2:{1={nickt1=1}}
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.AggAgg - zero called
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.AggAgg - combine val1:{},val2:{1={nickt3=1, nickt2=1, nickt1=1}}
23:22:00.731 [Thread-31-b-2-executor[10 10]] INFO  com.example.demo.trident.PrintEachFunc - null each tuple:[{1={nickt3=1, nickt2=1, nickt1=1}}]
  • 这里看到storm的线程的命名已经带上了bolt的命名,比如b-0、b-1、b-2

TridentBoltExecutor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/topology/TridentBoltExecutor.java

代码语言:javascript
复制
    public void execute(Tuple tuple) {
        if(TupleUtils.isTick(tuple)) {
            long now = System.currentTimeMillis();
            if(now - _lastRotate > _messageTimeoutMs) {
                _batches.rotate();
                _lastRotate = now;
            }
            return;
        }
        String batchGroup = _batchGroupIds.get(tuple.getSourceGlobalStreamId());
        if(batchGroup==null) {
            // this is so we can do things like have simple DRPC that doesn't need to use batch processing
            _coordCollector.setCurrBatch(null);
            _bolt.execute(null, tuple);
            _collector.ack(tuple);
            return;
        }
        IBatchID id = (IBatchID) tuple.getValue(0);
        //get transaction id
        //if it already exists and attempt id is greater than the attempt there
        
        
        TrackedBatch tracked = (TrackedBatch) _batches.get(id.getId());
//        if(_batches.size() > 10 && _context.getThisTaskIndex() == 0) {
//            System.out.println("Received in " + _context.getThisComponentId() + " " + _context.getThisTaskIndex()
//                    + " (" + _batches.size() + ")" +
//                    "\ntuple: " + tuple +
//                    "\nwith tracked " + tracked +
//                    "\nwith id " + id + 
//                    "\nwith group " + batchGroup
//                    + "\n");
//            
//        }
        //System.out.println("Num tracked: " + _batches.size() + " " + _context.getThisComponentId() + " " + _context.getThisTaskIndex());
        
        // this code here ensures that only one attempt is ever tracked for a batch, so when
        // failures happen you don't get an explosion in memory usage in the tasks
        if(tracked!=null) {
            if(id.getAttemptId() > tracked.attemptId) {
                _batches.remove(id.getId());
                tracked = null;
            } else if(id.getAttemptId() < tracked.attemptId) {
                // no reason to try to execute a previous attempt than we've already seen
                return;
            }
        }
        
        if(tracked==null) {
            tracked = new TrackedBatch(new BatchInfo(batchGroup, id, _bolt.initBatchState(batchGroup, id)), _coordConditions.get(batchGroup), id.getAttemptId());
            _batches.put(id.getId(), tracked);
        }
        _coordCollector.setCurrBatch(tracked);
        
        //System.out.println("TRACKED: " + tracked + " " + tuple);
        
        TupleType t = getTupleType(tuple, tracked);
        if(t==TupleType.COMMIT) {
            tracked.receivedCommit = true;
            checkFinish(tracked, tuple, t);
        } else if(t==TupleType.COORD) {
            int count = tuple.getInteger(1);
            tracked.reportedTasks++;
            tracked.expectedTupleCount+=count;
            checkFinish(tracked, tuple, t);
        } else {
            tracked.receivedTuples++;
            boolean success = true;
            try {
                _bolt.execute(tracked.info, tuple);
                if(tracked.condition.expectedTaskReports==0) {
                    success = finishBatch(tracked, tuple);
                }
            } catch(FailedException e) {
                failBatch(tracked, e);
            }
            if(success) {
                _collector.ack(tuple);                   
            } else {
                _collector.fail(tuple);
            }
        }
        _coordCollector.setCurrBatch(null);
    }
​
    private void failBatch(TrackedBatch tracked, FailedException e) {
        if(e!=null && e instanceof ReportedFailedException) {
            _collector.reportError(e);
        }
        tracked.failed = true;
        if(tracked.delayedAck!=null) {
            _collector.fail(tracked.delayedAck);
            tracked.delayedAck = null;
        }
    }
​
    private void checkFinish(TrackedBatch tracked, Tuple tuple, TupleType type) {
        if(tracked.failed) {
            failBatch(tracked);
            _collector.fail(tuple);
            return;
        }
        CoordCondition cond = tracked.condition;
        boolean delayed = tracked.delayedAck==null &&
                              (cond.commitStream!=null && type==TupleType.COMMIT
                               || cond.commitStream==null);
        if(delayed) {
            tracked.delayedAck = tuple;
        }
        boolean failed = false;
        if(tracked.receivedCommit && tracked.reportedTasks == cond.expectedTaskReports) {
            if(tracked.receivedTuples == tracked.expectedTupleCount) {
                finishBatch(tracked, tuple);                
            } else {
                //TODO: add logging that not all tuples were received
                failBatch(tracked);
                _collector.fail(tuple);
                failed = true;
            }
        }
        
        if(!delayed && !failed) {
            _collector.ack(tuple);
        }
        
    }
​
​
  • execute方法里头在TrackedBatch不存在时会创建一个,创建的时候会调用_bolt.initBatchState方法
  • 这里头可以看到在接收到正常tuple的时候,先调用bolt.execute(tracked.info, tuple)执行,然后在调用collector的ack,如果bolt.execute抛出FailedException,则直接failBatch,它会标记tracked.failed为true,最后在整个batch的tuple收发结束之后调用checkFinish,一旦发现有tracked.failed,则会调用collector.fail
  • 这里的bolt有两类,分别是TridentSpoutExecutor与SubtopologyBolt;如果是TridentSpoutExecutor,则tracked.condition.expectedTaskReports为0,这里每收到一个tuple(实际是发射一个batch的指令),在bolt.execute之后就立马finishBatch;而对于SubtopologyBolt,这里tracked.condition.expectedTaskReports不为0,需要等到最后的[id,count]指令再checkFinish

TridentSpoutExecutor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/spout/TridentSpoutExecutor.java

代码语言:javascript
复制
    @Override
    public void prepare(Map conf, TopologyContext context, BatchOutputCollector collector) {
        _emitter = _spout.getEmitter(_txStateId, conf, context);
        _collector = new AddIdCollector(_streamName, collector);
    }
​
    @Override
    public void execute(BatchInfo info, Tuple input) {
        // there won't be a BatchInfo for the success stream
        TransactionAttempt attempt = (TransactionAttempt) input.getValue(0);
        if(input.getSourceStreamId().equals(MasterBatchCoordinator.COMMIT_STREAM_ID)) {
            if(attempt.equals(_activeBatches.get(attempt.getTransactionId()))) {
                ((ICommitterTridentSpout.Emitter) _emitter).commit(attempt);
                _activeBatches.remove(attempt.getTransactionId());
            } else {
                 throw new FailedException("Received commit for different transaction attempt");
            }
        } else if(input.getSourceStreamId().equals(MasterBatchCoordinator.SUCCESS_STREAM_ID)) {
            // valid to delete before what's been committed since 
            // those batches will never be accessed again
            _activeBatches.headMap(attempt.getTransactionId()).clear();
            _emitter.success(attempt);
        } else {            
            _collector.setBatch(info.batchId);
            _emitter.emitBatch(attempt, input.getValue(1), _collector);
            _activeBatches.put(attempt.getTransactionId(), attempt);
        }
    }
​
    @Override
    public void finishBatch(BatchInfo batchInfo) {
    }
​
    @Override
    public Object initBatchState(String batchGroup, Object batchId) {
        return null;
    }
  • TridentSpoutExecutor使用的是AddIdCollector,它的initBatchState以及finishBatch方法均为空操作
  • execute方法分COMMIT_STREAM_ID、SUCCESS_STREAM_ID、普通stream来处理
  • 普通的stream发来的tuple就是发射batch的指令,这里就调用_emitter.emitBatch发射batch的tuples

SubtopologyBolt

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/planner/SubtopologyBolt.java

代码语言:javascript
复制
    @Override
    public Object initBatchState(String batchGroup, Object batchId) {
        ProcessorContext ret = new ProcessorContext(batchId, new Object[_nodes.size()]);
        for(TridentProcessor p: _myTopologicallyOrdered.get(batchGroup)) {
            p.startBatch(ret);
        }
        return ret;
    }
​
    @Override
    public void execute(BatchInfo batchInfo, Tuple tuple) {
        String sourceStream = tuple.getSourceStreamId();
        InitialReceiver ir = _roots.get(sourceStream);
        if(ir==null) {
            throw new RuntimeException("Received unexpected tuple " + tuple.toString());
        }
        ir.receive((ProcessorContext) batchInfo.state, tuple);
    }
​
    @Override
    public void finishBatch(BatchInfo batchInfo) {
        for(TridentProcessor p: _myTopologicallyOrdered.get(batchInfo.batchGroup)) {
            p.finishBatch((ProcessorContext) batchInfo.state);
        }
    }
​
    protected static class InitialReceiver {
        List<TridentProcessor> _receivers = new ArrayList<>();
        RootFactory _factory;
        ProjectionFactory _project;
        String _stream;
        
        public InitialReceiver(String stream, Fields allFields) {
            // TODO: don't want to project for non-batch bolts...???
            // how to distinguish "batch" streams from non-batch streams?
            _stream = stream;
            _factory = new RootFactory(allFields);
            List<String> projected = new ArrayList<>(allFields.toList());
            projected.remove(0);
            _project = new ProjectionFactory(_factory, new Fields(projected));
        }
        
        public void receive(ProcessorContext context, Tuple tuple) {
            TridentTuple t = _project.create(_factory.create(tuple));
            for(TridentProcessor r: _receivers) {
                r.execute(context, _stream, t);
            }            
        }
        
        public void addReceiver(TridentProcessor p) {
            _receivers.add(p);
        }
        
        public Factory getOutputFactory() {
            return _project;
        }
    }
  • 它的initBatchState方法,会创建ProcessorContext,然后会调用TridentProcessor(比如AggregateProcessor、EachProcessor)的startBatch方法
  • execute方法则调用InitialReceiver的execute,而它则是调用TridentProcessor的execute方法(比如AggregateProcessor)
  • finishBatch的时候则是调用TridentProcessor(比如AggregateProcessor、EachProcessor)的finishBatch方法

WindowTridentProcessor

storm-core-1.2.2-sources.jar!/org/apache/storm/trident/windowing/WindowTridentProcessor.java

代码语言:javascript
复制
    @Override
    public void startBatch(ProcessorContext processorContext) {
        // initialize state for batch
        processorContext.state[tridentContext.getStateIndex()] = new ArrayList<TridentTuple>();
    }
​
    @Override
    public void execute(ProcessorContext processorContext, String streamId, TridentTuple tuple) {
        // add tuple to the batch state
        Object state = processorContext.state[tridentContext.getStateIndex()];
        ((List<TridentTuple>) state).add(projection.create(tuple));
    }
​
    @Override
    public void finishBatch(ProcessorContext processorContext) {
​
        Object batchId = processorContext.batchId;
        Object batchTxnId = getBatchTxnId(batchId);
​
        LOG.debug("Received finishBatch of : [{}] ", batchId);
        // get all the tuples in a batch and add it to trident-window-manager
        List<TridentTuple> tuples = (List<TridentTuple>) processorContext.state[tridentContext.getStateIndex()];
        tridentWindowManager.addTuplesBatch(batchId, tuples);
​
        List<Integer> pendingTriggerIds = null;
        List<String> triggerKeys = new ArrayList<>();
        Iterable<Object> triggerValues = null;
​
        if (retriedAttempt(batchId)) {
            pendingTriggerIds = (List<Integer>) windowStore.get(inprocessTriggerKey(batchTxnId));
            if (pendingTriggerIds != null) {
                for (Integer pendingTriggerId : pendingTriggerIds) {
                    triggerKeys.add(triggerKey(pendingTriggerId));
                }
                triggerValues = windowStore.get(triggerKeys);
            }
        }
​
        // if there are no trigger values in earlier attempts or this is a new batch, emit pending triggers.
        if(triggerValues == null) {
            pendingTriggerIds = new ArrayList<>();
            Queue<StoreBasedTridentWindowManager.TriggerResult> pendingTriggers = tridentWindowManager.getPendingTriggers();
            LOG.debug("pending triggers at batch: [{}] and triggers.size: [{}] ", batchId, pendingTriggers.size());
            try {
                Iterator<StoreBasedTridentWindowManager.TriggerResult> pendingTriggersIter = pendingTriggers.iterator();
                List<Object> values = new ArrayList<>();
                StoreBasedTridentWindowManager.TriggerResult triggerResult = null;
                while (pendingTriggersIter.hasNext()) {
                    triggerResult = pendingTriggersIter.next();
                    for (List<Object> aggregatedResult : triggerResult.result) {
                        String triggerKey = triggerKey(triggerResult.id);
                        triggerKeys.add(triggerKey);
                        values.add(aggregatedResult);
                        pendingTriggerIds.add(triggerResult.id);
                    }
                    pendingTriggersIter.remove();
                }
                triggerValues = values;
            } finally {
                // store inprocess triggers of a batch in store for batch retries for any failures
                if (!pendingTriggerIds.isEmpty()) {
                    windowStore.put(inprocessTriggerKey(batchTxnId), pendingTriggerIds);
                }
            }
        }
​
        collector.setContext(processorContext);
        int i = 0;
        for (Object resultValue : triggerValues) {
            collector.emit(new ConsList(new TriggerInfo(windowTaskId, pendingTriggerIds.get(i++)), (List<Object>) resultValue));
        }
        collector.setContext(null);
    }
  • 可以看到WindowTridentProcessor在startBatch的时候,给processorContext.state[tridentContext.getStateIndex()]重新new了一个list
  • 在execute的时候,将接收到的tuple存到processorContext.state[tridentContext.getStateIndex()]中
  • 在finishBatch的时候,将processorContext.state[tridentContext.getStateIndex()]的数据添加到windowStore以及windowManager的ConcurrentLinkedQueue中
  • window的trigger会从ConcurrentLinkedQueue取出窗口数据,添加到pendingTriggers中;而WindowTridentProcessor在finishBatch的时候,会移除pendingTriggers的数据,然后通过FreshCollector进行emit
  • 通过FreshCollector发射出来的数据,会被它的TupleReceiver接收处理(比如ProjectedProcessor、PartitionPersistProcessor),PartitionPersistProcessor就是将数据存到state中,而ProjectedProcessor则根据window的outputFields提取字段,然后将数据传递给下游的各种processor,比如EachProcessor

小结

  • trident spout发射一个batch的数据,然后等待下游执行完这个batch数据就会按batch来finishBatch;对于bolt与bolt来说,之间tuple的ack间隔取决于每个tuple的处理时间(TridentBoltExecutor会在tuple处理完之后自动帮你进行ack),如果整体处理时间过长,会导致整个topology的tuple处理超时,触发spout的fail操作,这个时候就会重新触发该batchId,如果spout是transactional的,那么batchId对应的tuples在重新触发时不变
  • window操作会打乱trident spout原始的batch,一个batch的数据先是累积在ProcessContext的state中(WindowTridentProcessor每次在startBatch的时候都会重置state)中,在finishBatch的时候,将数据拷贝到windowStore以及windowManager的ConcurrentLinkedQueue,之后等待window的trigger触发,计算出窗口数据,然后放到pendingTriggers中,而在bolt finishBatch的时候是从pendingTriggers移除窗口数据,然后交给FreshCollector然后给到下游的processor处理,而下游的processor的startBatch及finishBatch时跟随原始的spout的节奏来的,而非window来触发
  • 假设数据源源不断,那么spout发送batch的速度取决于Config.TOPOLOGY_TRIDENT_BATCH_EMIT_INTERVAL_MILLIS(topology.trident.batch.emit.interval.millis,在defaults.yaml默认为500)参数,而窗口的interval通常一般比默认的batch interval要大,这个样子window就会聚合多个batch的数据;同时由于前面finishBatch的时候,才把数据添加到windowManager的ConcurrentLinkedQueue,因而这个时候的pendingTriggers还没有数据,因而通常前面几次finishBatch的时候从窗口获取的数据为空,因而后续的processor也没有数据处理,要注意判空防止出现空指针
  • 如果对数据进行groupBy/partitionBy,当parallelism为1时,这个时候groupBy/partitionBy是按batch来的;当parallelism大于1时,原始的spout在emit一个batch的时候,会分发到多个partition/task,原始batch的数据流就被分流了,每个task自己处理完数据之后就执行各自的finishBatch操作(tuple按emit的顺序来,最后一个是[id,count],它就相当于结束batch的指令,用于检测及触发完成batch操作),然后将新batch的数据发送给下游,新的batch发送完的时候发送[id,cout],依次在下游bolt进行batch操作;global操作将数据分发到同一个partition/task;batchGlobal在parallelism为1的时候效果跟global一样,在parallelism大于1时,就按batchId将数据分发到不同的partition/task
  • aggregate操作用于聚合数据,一般配合groupBy或partitionBy,会对上游的batch再次进行分流,然后按分流后的batch来aggregate;这个时候如果parallelism大于1,则是分task来进行aggregate,之后还想把这些聚合在一起的话,可以配合global().aggregate()操作;只要中间没有window操作,那么还是会按原始的batch来最后aggregate的,因为TridentBoltExecutor的tracked.condition.expectedTaskReports记录了该bolt需要等到哪几个task汇报[id,count],在接收[id,count]数据的时候,会先判断tracked.reportedTasks是否等于cond.expectedTaskReports,相等之后再判断tracked.receivedTuples是否等于tracked.expectedTupleCount,相等才能进行finishBatch,完成当前batch,然后向下游发射[id,count]数据;通过expectedTaskReports的判断,是的整个batch在经过多个task分流处理之后最后还能按原始的batch聚合在一起;不过要注意window操作会在window阶段打乱trident spout原始的batch

doc

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 实例
  • TridentBoltExecutor
  • TridentSpoutExecutor
  • SubtopologyBolt
  • WindowTridentProcessor
  • 小结
  • doc
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档