前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >学界 | 李飞飞高徒Andrej Karpathy提醒你,小心搭建神经网络的六个坑

学界 | 李飞飞高徒Andrej Karpathy提醒你,小心搭建神经网络的六个坑

作者头像
大数据文摘
发布2018-07-31 11:54:00
3240
发布2018-07-31 11:54:00
举报
文章被收录于专栏:大数据文摘
大数据文摘编辑组出品

继Ian Goodfellow的推特小课堂之后,特斯拉的人工智能研究负责人、李飞飞斯坦福高徒Andrej Karpathy也在twitter上分享了他对神经网络的一些研究技巧。

昨晚,他连发几条twitter,细数了六种神经网络研究中的常见错误。引发了一波研究者们对于自己入过坑的吐槽。

来看一下Ian Goodfellow让你当心的这六个坑吧:

最常见的神经网络错误:

  • 没有先试过所有数据一批处理
  • 忘了为网络切换训练/评估模式
  • 忘了在.backward()之前.zero_grad()(在pytorch中)
  • 将softmaxed输出传递给预期原始logits的损失
  • 使用BatchNorm时,您没有对线性/ 二维卷积层使用bias = False,或者反过来忘记将其包含在输出层中。 这个倒不会让你失败,但它们是虚假的参数
  • 以为view()和permute()是一样的事情(不正确地使用view)

之后,在评论区,也有读者针对“对数据初始化”展开了讨论。

对此,Ian也进一步详细解释:

是的,有几次我重新打开数据,得到的损失值却一致,而且如果这样做会产生一个漂亮的损失曲线,这表明对数据初始化并不是明智的做法。我有时喜欢调整最后一层偏差,使之接近基础分布。

我喜欢先从最简单的开始,例如,先对所有未处理的数据进行训练,看看基本输出分布的表现如何,然后逐增加输入和扩大网络,确保每次都比以前的表现更好。

今日机器学习概念】

Have a Great Definition

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-07-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档