首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >AI医疗开创性研究:深度学习进行病变检索和匹配(31 PPT)

AI医疗开创性研究:深度学习进行病变检索和匹配(31 PPT)

作者头像
新智元
发布于 2018-05-29 08:09:32
发布于 2018-05-29 08:09:32
9230
举报
文章被收录于专栏:新智元新智元

新智元专栏

【新智元导读】美国国立卫生研究院(NIH)的研究人员通过创建基于真实放射学影像的大型数据集,进行病变检索和匹配的研究。本文是相关研究在约翰霍普金斯大学 Sol Goldman国际会议上的演讲整理,该研究具有创新性的科学价值和临床价值。

论文地址:

http://www.cs.jhu.edu/~lelu/publication/DeepLesionGraph_CVPR2018_camera_ready.pdf

本文介绍了美国国立卫生研究院(NIH)最新的一篇CVPR论文“Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database”(深度病变图:在不同的大规模病变数据库中,重要放射学图像发现的关系学习和组织),主要作者是闫柯和王潇崧等研究人员。

对于精准癌症影像诊断和治疗方案的选取,基于内容的retrieval和instance-level相似性的描述是很重要的。人类的癌症有很严重的长尾现象,并不是简单的分类或者regression; mapping X to Y就能很好解决,所以癌症的治疗和诊断本质上最重要的是个性化(personalization)。当有一个新的病人,医生最想知道的是在以前已经治疗过的病人里面有没有谁跟他是相似的。如果能够找出相似的病人,而且知道这些病人的治疗方案以及治疗结果,医生就可以更有针对性地来设计治疗方案。而且通过对相似病人的建模,可以知道每种治疗方案的风险性以及预后效果。

虽然每个大医院都存了上百万甚至上千万的病人数据,但是目前没有很好的办法来做相似性病人的检索。这篇文章的意义是以肿瘤图像(tumor image instance)为例子,打通了一个做这个方向的技术模型。该模型可以允许一个新的肿瘤图像在以前上万的肿瘤图像中检索相似的、而且又比较完整的tumor similarity graph,这对临床工作有很大的帮助。这方面的工作以前非常少,因此这篇文章是比较有前瞻意义的。

该研究的数据涉及4000多个病人的一万多个医学图像。既使在这个数据尺度下,因为计算能力的问题,人是很难做什么的。

计算医学本质上是为了去获取临床医生想要,需要但自己又没办法做到的东西。有的病人会问到大医生如果采取了A治疗方案,预后结果会怎么样,生存率有多高?现在都是基于经验去猜的,也不能定量的计算。这篇文章就是一个很好的例子,来逐步解决这个定量精准医疗的问题。相比之下,大家比较熟悉的肺节节检测问题,是属于另外一类的问题,本来就是医生也可以做,计算的目标是使用深度学习来做辅助诊断,主要以提高医生效率为目的。

这篇文章里面用到了32000多个医生测量过的significant clinical findings,,这些测量结果是放在医院PACS/RIS放射学数据库里面作为定量的references。我们的算法通过pair wise similarity graph可以针对图像分类,包括 intra-patient matching(在同一个病人的多次影像studies中,自动的把以前测量过的同一个肿瘤影像连起来);并且允许跨病人的、基于图像相似性的检索(inter-patient similarity retrieval)。

背景

包含多样化的图像和密集注释的大规模数据集对于计算机视觉和医学图像研究都很重要

  • 众包模式可以用于注释计算机视觉数据集,但医学图像(MI)需要专业知识和培训
  • 通过Deep Learning挖掘互联网图像可用于计算机视觉以获取自动注释;

幸运的是,像计算机视觉中的网络数据一样,大量数据源以图像存档和通信系统(PACS / RIS)的形式存在。

那么,我们可以挖掘“非结构化但非常丰富的”PACS吗?

放射科医师在日常工作中可能会定期对放射学影像的某些显著的异常或“病变”进行标记和测量

  • 多年来收集并存储在医院的PACS / RIS中
  • 有时被称为“bookmarks”
  • 用于评估患者的状况或治疗反应

“DeepLesion”数据集:

  • 这些数据从NIH的PACS里的bookmarks挖掘而来

问题定义

  • DeepLesion中的病变基本未排序,并且缺乏语义标签,例如肺结节,纵隔淋巴结

我们的目标是:通过“自动Instance-level的相似性建模和拓扑发现挖掘”,了解和组织大量的病变或肿瘤学发现

1. 发现他们的类型和位置

2. 从不同患者群体中发现相似的病变,即基于内容的检索

3. 跟踪同一患者几次纵向研究中的相同病变,即多次研究中的病变实例匹配或追踪

相关工作:

  • 病变检索
  • 病变匹配

监督提示(I):病变类型

  • 我们随机选择30%病灶并手动标记为8种类型:肺,腹部,纵隔,肝,骨盆,软组织,肾和骨
  • 病变的粗糙属性

监督提示(II):相对身体位置

  • 在DeepLesion中,某些CT体积放在身体的一部分上,例如仅显示左半身
  • SSBR在罕见的身体部位表现不佳,这些部位在训练组中的频率较低,例如头部和腿部

监督提示(III):病灶大小

  • 病变直径的长轴和短轴的长度
  • 已由放射科医师进行注释和测量
  • 范围从0.2到343毫米,中位数为15.6毫米

使用顺序采样构建Triplet Network

图3第4行有标签噪声,病变D与A~C(软组织与骨盆)的类型不同,

网络架构

  • 主干:VGG-16
  • Multi-scale, multi-crop
  • 输出:对于每个病变实例,输出是一个1408D特征嵌入向量

病变组织:检索和匹配

  • 基于内容的Inter-patient的检索:找到最近邻
  • Intra-patient 的病变匹配:基于图形的edge pruning

实现细节:图像预处理

实现细节:训练计划

  • 位置和大小的每个维度的最大值归一化为1
  • 每个mini-batch 24个five-instance序列
  • 学习率为0.002的SGD
  • 为了训练SSBR,我们使用了来自DeepLesion的420名受试者的800个随机未标记的CT volumes

实验

  • DeepLesion的可视化:将病灶密集连接的超图投影到2D图(t-SNE)中
  • 散点图的X轴和Y轴对应于每个病变相对身体位置的X和Z坐标

实验:病变检索

  • 多尺度的深部病变外观矢量,通过Triplet Network对病灶类型、位置和大小进行编码

分析和发现

  • 当位置和大小作为监督提示时,网络在病变类型检索方面表现最佳; 甚至比只使用病变类型作为提示时更好。
  • 位置和大小提供了学习病变相似性嵌入的重要补充信息
  • 仅使用 coarse-scale 特征(conv5,conv4)时, location稍好,因为location主要依赖更高级的上下文信息
  • 融合 fine-level特征(conv3,conv2)可显着提高类型和大小预测的准确性
  • 迭代病灶特征/类型细化也有帮助!

实验:分类

最容易混淆的类型是纵隔/肺部病变,以及腹部/肝脏/肾脏病变,因为其中一些在外观和位置上都相似。

实验:病变匹配

  • 将DeepLesion中的103名患者的1313个病变手动分成593个组进行评估
  • 每组1-11个病变
  • true positive decision将同一实例的两个病变分配给同一组, false positive decision将两个不同实例的病变分配给同一组

定量病变匹配的精度非常高!

纵向病变匹配

结论

我们提供了一个大型、全面的数据集DeepLesion,其中包括从PACS挖掘的重要放射影像的findings

可用于多种类别的病变检测,检索,分类,分割......,这是开创性的研究

利用一个triplet network学习Lesion Graph Embedding,以对类型、位置和大小的相似关系进行建模

  • 所需的唯一手动工作是某些种子图像的类别标签
  • 非参数的深度放射学实例/知识表示

结果:(a)基于内容的inter-patient病变检索和(b) intra-patient的定性和定量的病变匹配

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
NIH开源迄今最大临床医疗图像数据集,用深度学习构建通用疾病检测模型!
【新智元导读】NIH临床中心最新公布了一个迄今规模最大的多类别、病灶级别标注临床医疗CT图像开放数据集DeepLesion,研究人员在此基础上训练深度神经网络,创建了一个具有统一框架的大规模通用病灶检测器,能够更准确、更自动地衡量患者体内所有病灶的大小,实现全身范围的癌症初步评估。
新智元
2018/08/16
4.8K0
NIH开源迄今最大临床医疗图像数据集,用深度学习构建通用疾病检测模型!
一文带你解读:卷积神经网络自动判读胸部CT图像的机器学习原理
本文介绍了利用机器学习实现胸部CT扫描图像自动判读的任务,这对我来说是一个有趣的课题,因为它是我博士论文研究的重点。这篇文章的主要参考资料是我最近的预印本 “Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale Chest Computed Tomography Volumes.”
deephub
2020/05/09
1.1K0
一文带你解读:卷积神经网络自动判读胸部CT图像的机器学习原理
AJNR:深度学习在神经放射学的应用
欢迎关注思影科技的长文解读,希望我们的解读可以伴随思影的读者们共同成长,如果可以给我们一个转发,一定是对思影的莫大帮助和鼓励,谢谢!
用户1279583
2020/05/25
6540
AJNR:深度学习在神经放射学的应用
ULS2023——CT图像中常见病变分割
今天将分享CT图像中常见病变分割挑战赛完整实现版本,为了方便大家学习理解整个流程,将整个流程步骤进行了整理,并给出详细的步骤结果。感兴趣的朋友赶紧动手试一试吧。
医学处理分析专家
2023/12/19
4040
ULS2023——CT图像中常见病变分割
RSNA 2018 有哪些亮点?多位行业精英为你深度解读
雷锋网《AI掘金志》频道:只做 AI +「安防、医疗、零售」三大传统领域的深度采访报道。
AI掘金志
2019/08/29
5570
RSNA 2018 有哪些亮点?多位行业精英为你深度解读
MICS最新“新冠肺炎+AI”讲座:武汉协和放射科副主任与5家AI公司解读疫情最新进展
AI能够在CT诊断新冠肺炎中做什么?沈定刚教授明确提出了三点:定量分析、前后片对比以及向医生推荐诊断优先级。
AI掘金志
2020/03/03
7980
MICS最新“新冠肺炎+AI”讲座:武汉协和放射科副主任与5家AI公司解读疫情最新进展
综述:当医学影像遇上深度学习
在传统医疗领域,医院内每日的医学影像数据量巨大,影像科医生做着大量重复性和机械性的工作。每张片子都需要医生仔细筛查和甄别,耗费了大量的精力,同时过于机械和重复性的工作也使得医生可能由于过于疲乏而产生判断上的失误。
AI科技大本营
2019/11/27
1.3K0
吴恩达的最新研究是否严谨?Nature论文作者撰文质疑AI医疗影像研究现状
选自lukeoakdenrayner 作者:Luke Oakden-Rayner 机器之心编译 自动处理医疗影像一直是人工智能的重要发展方向之一,吸引了很多知名学者参与其中,并已出现了很多引人注目的成果。近期斯坦福大学吴恩达等人提出的 CheXNet 便是其中之一。研究人员在其论文中表示:新技术已经在识别胸透照片中肺炎等疾病上的准确率上超越了人类专业医师。然而,另一群学者对目前的一些研究产生了怀疑。本文作者 Luke Oakden-Rayner 是阿德莱德大学的放射科在读博士,曾作为第一作者于今年 5 月在
机器之心
2018/05/11
1K0
MELA2022——纵隔病变分析挑战赛
今天将分享纵隔肿瘤检测完整实现版本,为了方便大家学习理解整个流程,将整个流程步骤进行了整理,并给出详细的步骤结果。感兴趣的朋友赶紧动手试一试吧。
医学处理分析专家
2022/08/20
5520
MELA2022——纵隔病变分析挑战赛
腾讯AI Lab推进医疗全流程覆盖:辅诊导诊精度再升级、布局三类病理AI研究
AI+医疗不止于影像筛查,姚建华博士在本文介绍了 AI 辅诊、导诊、分诊的快速发展,以及病理分析上的科研趋势。 2019腾讯全球数字生态大会将于5月21日-5月23日在昆明滇池国际会展中心召开。5月22日上午,以“智医疗 至健康”为主题的智慧医疗专场重磅开启。 随着医疗行业融入更多大数据、人工智能、传感技术等高科技,医疗服务正走向真正意义的智能化,并快步走进寻常百姓的生活。AI医学影像分析、AI辅助诊断、AI运动视频分析、AI病理分析等创新技术,正在不断开拓智慧医疗的新边界,更优质、高效、安全的医疗逐
腾讯技术工程官方号
2019/05/23
1.6K0
腾讯AI Lab推进医疗全流程覆盖:辅诊导诊精度再升级、布局三类病理AI研究
脑肿瘤的影像组学:图像评估、定量特征描述和机器学习方法
影像组学描述了从影像图像中提取定量特征的一系列计算方法。其结果常常被用于评估影像诊断,预后以及肿瘤治疗。然而,在临床环境中,优化特征提取和快速获取信息的方法仍然面临重大挑战。同样重要的是,从临床应用角度,预测的影像组学特征必须明确地与有意义的生物学特征和影像科医生熟悉的定性成像特性相关联。在这里,我们使用跨学科的方法来强化影像组学的研究。我们通过提供基于新的临床见解的计算模型(例如,计算机视觉和机器学习)来探究脑肿瘤影像学研究(例如,潜在的图像意义)。我们概述了当前定量图像特征提取和预测方法,以及支持临床决策不同水平的可行的临床分类。我们还进一步讨论了机器学习未来可能面临的挑战和数据处理方法,以推进影像组学研究。本文发表在American Journal of Neuroradiology杂志。
用户1279583
2022/02/28
1.9K0
脑肿瘤的影像组学:图像评估、定量特征描述和机器学习方法
从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战
【新智元导读】从传统 CAD 发展到今天深度学习驱动的智能医疗影像系统,新技术的兴起和应用为医疗领域带来了哪些变化?智能医疗影像系统离常规临床应用还有多远?特别是,身在这波澜壮阔的技术变革进程中的专家、放射科医生和创业者,他们有什么感受和感悟?深度学习在这一领域的应用还面对哪些技术上的挑战?希望这份来自医疗行业和创业者口述的第一手材料,能给您提供一些参考。 图像识别是深度学习等 AI 技术最先突破的领域,而在 AI 与医疗场景的结合中,目前看来,基于深度学习技术的医疗影像的识别与分析,也很可能会在整个智
新智元
2018/03/27
1.2K0
从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战
CV技术在医疗领域中有哪些应用?Salesforce、谷歌、斯坦福综述文章登上Nature子刊
最近,来自 Salesforce AI 研究院、谷歌、斯坦福大学等机构的研究人员合作撰写了一篇文章,综述了基于深度学习的计算机视觉技术在医疗领域中的现状与应用。该论文发表在 Nature 旗下期刊 npj Digital Medicine 上。
机器之心
2021/01/20
1.2K0
吉大一院放射科主任张惠茅:中外医学影像 AI 的进展对比
我们不能把新的算法、数据都放在自己的腰包里。如果中国未来想做好AI,一定要打开这个壁垒。在安全的前提下,医生团队奉献数据,算法团队奉献算法,在一个公开公平的情况下,大家互相交流才能够碰撞出更多的火花。
AI掘金志
2019/12/04
8420
放射学中基于影像组学和人工智能预测癌症预后
人工智能(AI)在医学影像诊断中的成功应用使得基于人工智能的癌症成像分析技术开始应用于解决其他更复杂的临床需求。从这个角度出发,我们讨论了基于人工智能利用影像图像解决临床问题的新挑战,如预测多种癌症的预后、预测对各种治疗方式的反应、区分良性治疗混杂因素与进展,肿瘤异常反应的识别以及突变和分子特征的预测等。我们综述了人工智能技术在肿瘤成像中的发展和机遇,重点介绍了基于人工的影像组学方法和基于深度学习的方法,并举例说明了它们在决策支持中的应用。我们还解决了临床应用过程中面临的挑战,包括数据整理和标注、可解释性以及市场监管和报销问题。我们希望通过帮助临床医生理解人工智能的局限性和挑战,以及它作为癌症临床决策支持工具所能提供的机会,为他们揭开影像组学人工智能的神秘面纱。
用户1279583
2022/02/28
1.5K0
放射学中基于影像组学和人工智能预测癌症预后
AI 医疗公司“战疫”在前线
截止到2月6日,随着新冠病毒肺炎疫情的不断发展,全国累计已有31161例确诊病例,26359例疑似病例。不过,由于医疗资源高度短缺,尤其核心疫区的快速诊疗能力出现结构性缺失。
AI科技大本营
2020/02/20
7150
AI 医疗公司“战疫”在前线
【数据集】一文道尽医学图像数据集与竞赛
在AI与深度学习逐渐发展成熟的趋势下,人工智能和大数据等技术开始进入了医疗领域,它们把现有的一些传统流程进行优化,大幅度提高各种流程的效率、精度、用户体验,同时也缓解了医疗资源的压力和精确度不够的问题。
用户1508658
2019/07/26
4.6K0
【数据集】一文道尽医学图像数据集与竞赛
RSNA 2019:记录、风向与思考(企业篇)
每年RSNA上,我们都能看见这一年最先进的产品和技术,看见曾经的不可能变为可能。今年的RSNA风向标指向哪里?医疗AI的局中人该何去何从?
AI掘金志
2019/12/19
4910
RSNA 2019:记录、风向与思考(企业篇)
研究团队开发AI使用深度学习方法测量肿瘤
测量肿瘤对癌症治疗的反应在决定病人的预后方面起着重要的作用。这一过程通常由训练有素的放射科医师进行,是劳动密集型的,主观的,容易造成前后不一致。
AiTechYun
2018/07/27
5030
研究团队开发AI使用深度学习方法测量肿瘤
深度学习在医学影像上的应用(一)——分类
目前人工智能是最火热的领域,而深度学习是人工智能中最璀璨的分支,已经在自然图像上取得了阶段性进展。今天我将分享深度学习在医学影像上的应用最近进展,这一篇主要说一下从2015年到现在深度学习在医学影像分类相关的情况。
医学处理分析专家
2020/06/29
6.8K0
深度学习在医学影像上的应用(一)——分类
推荐阅读
相关推荐
NIH开源迄今最大临床医疗图像数据集,用深度学习构建通用疾病检测模型!
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档