前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于tensorflow实现简单卷积神经网络Lenet5

基于tensorflow实现简单卷积神经网络Lenet5

作者头像
徐飞机
发布2018-05-15 17:27:21
1.1K0
发布2018-05-15 17:27:21
举报

参考博客:https://blog.csdn.net/u012871279/article/details/78037984

https://blog.csdn.net/u014380165/article/details/77284921

目前人工智能神经网络已经成为非常火的一门技术,今天就用tensorflow来实现神经网络的第一块敲门砖。

首先先分模块解释代码。

1.先导入模块,若没有tensorflow还需去网上下载,这里使用mnist训练集来训练,进行手写数字的识别。

代码语言:javascript
复制
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf 

#导入数据,创建一个session对象 ,之后的运算都会跑在这个session里
mnist = input_data.read_data_sets("MNIST/",one_hot=True)
sess = tf.InteractiveSession()

2.为了方便,定义后来要反复用到函数

代码语言:javascript
复制
#定义一个函数,用于初始化所有的权值 W,这里我们给权重添加了一个截断的正态分布噪声 标准差为0.1
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b,这里给偏置加了一个正值0.1来避免死亡节点
def bias_variable(shape):
    inital = tf.constant(0.1,shape=shape)
    return tf.Variable(inital)

#定义一个函数,用于构建卷积层,这里strides都是1 代表不遗漏的划过图像的每一个点
def conv2d(x,w):
    return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')

#定义一个函数,用于构建池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
主要的函数说明:

卷积层: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

参数说明:
  • data_format:表示输入的格式,有两种分别为:“NHWC”和“NCHW”,默认为“NHWC”
  • input:输入是一个4维格式的(图像)数据,数据的 shape 由 data_format 决定:当 data_format 为“NHWC”输入数据的shape表示为[batch, in_height, in_width, in_channels],分别表示训练时一个batch的图片数量、图片高度、 图片宽度、 图像通道数。当 data_format 为“NHWC”输入数据的shape表示为[batch, in_channels, in_height, in_width]
  • filter:卷积核是一个4维格式的数据:shape表示为:[height,width,in_channels, out_channels],分别表示卷积核的高、宽、深度(与输入的in_channels应相同)、输出 feature map的个数(即卷积核的个数)。
  • strides:表示步长:一个长度为4的一维列表,每个元素跟data_format互相对应,表示在data_format每一维上的移动步长。当输入的默认格式为:“NHWC”,则 strides = [batch , in_height , in_width, in_channels]。其中 batch 和 in_channels 要求一定为1,即只能在一个样本的一个通道上的特征图上进行移动,in_height , in_width表示卷积核在特征图的高度和宽度上移动的布长,即 。
  • padding:表示填充方式:“SAME”表示采用填充的方式,简单地理解为以0填充边缘,当stride为1时,输入和输出的维度相同;“VALID”表示采用不填充的方式,多余地进行丢弃。具体公式: “SAME”: “VALID”:

池化层: tf.nn.max_pool( value, ksize,strides,padding,data_format=’NHWC’,name=None) 或者 tf.nn.avg_pool(…)

参数说明:
  • value:表示池化的输入:一个4维格式的数据,数据的 shape 由 data_format 决定,默认情况下shape 为[batch, height, width, channels]
  • 其他参数与 tf.nn.cov2d 类型
  • ksize:表示池化窗口的大小:一个长度为4的一维列表,一般为[1, height, width, 1],因不想在batch和channels上做池化,则将其值设为1。
代码语言:javascript
复制
#placceholder 基本都是用于占位符 后面用到先定义
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1])                                #将数据reshape成适合的维度来进行后续的计算

#第一个卷积层的定义
W_conv1 = weight_variable([5,5,1,32])                                
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)                #激活函数为relu
h_pool1 = max_pool_2x2(h_conv1)                                        #2x2 的max pooling 

#第二个卷积层的定义
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#第一个全连接层的定义
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

#将第一个全连接层 进行dropout 随机丢掉一些神经元不参与运算
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#第二个全连接层 分为十类数据 softmax后输出概率最大的数字
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

上面用到了softmax函数来计算loss。

那softmax loss是什么意思呢?如下:

首先L是损失。Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。那么哪个位置的值是1呢?答案是真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:

当然此时要限定j是指向当前样本的真实标签。

来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。那么假设p=[0.05,0.15,0.4,0.3,0.1],这个预测结果虽然也错了,但是没有前面那个那么离谱,对应的损失L=-log(0.3)。我们知道log函数在输入小于1的时候是个负数,而且log函数是递增函数,所以-log(0.6) < -log(0.3) < -log(0.1)。简单讲就是你预测错比预测对的损失要大,预测错得离谱比预测错得轻微的损失要大。

———————————–华丽的分割线———————————–

理清了softmax loss,就可以来看看cross entropy了。 corss entropy是交叉熵的意思,它的公式如下:

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None) 

上面方法中常用的是前两个参数:

第一个参数x:指输入 

第二个参数keep_prob: 设置神经元被选中的概率,在初始化时keep_prob是一个占位符,  keep_prob = tf.placeholder(tf.float32) 。tensorflow在run时设置keep_prob具体的值,例如keep_prob: 0.5

第五个参数name:指定该操作的名字。

correct_predition 进行的是 分别取得预测数据和真实数据中概率最大的来比对是否一样

代码语言:javascript
复制
tf.cast()为类型转换函数 转换成float32类型
代码语言:javascript
复制
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))        #交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)                                #这里用Adam优化器 优化 也可以使用随机梯度下降

correct_predition = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))                   
accuracy = tf.reduce_mean(tf.cast(correct_predition,tf.float32))                                #准确率

tf.initialize_all_variables().run()                                                                #使用全局参数初始化器 并调用run方法 来进行参数初始化

tf.initialize_all_variables() 接口是老的接口 也许你们的tensorflow 已经用不了     现在tf.initialize_all_variables()已经被tf.global_variables_initializer()函数代替

下面是使用大小为50的mini-batch 来进行迭代训练  每一百次 勘察一下准确率   训练完毕     就可以直接进行数据的测试了

代码语言:javascript
复制
for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})        #每一百次验证一下准确率
        print "step %d,training accuracy %g"%(i,train_accuracy)

    train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})                            #batch[0]   [1] 分别指数据维度 和标记维度 将数据传入定义好的优化器进行训练


print "test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0})    #开始测试数据 

同学们大概应该直到这个过程了,如果不理解神经网络Lenet 建议先百度看看他的原理

下面是完整代码。

代码语言:javascript
复制
# -*- coding: utf-8 -*-
"""
Created on XU JING HUI  4-26-2018

@author: root
"""
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf 

#导入数据,创建一个session对象 ,之后的运算都会跑在这个session里
mnist = input_data.read_data_sets("MNIST/",one_hot=True)
sess = tf.InteractiveSession()

#定义一个函数,用于初始化所有的权值 W,这里我们给权重添加了一个截断的正态分布噪声 标准差为0.1
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)

#定义一个函数,用于初始化所有的偏置项 b,这里给偏置加了一个正值0.1来避免死亡节点
def bias_variable(shape):
    inital = tf.constant(0.1,shape=shape)
    return tf.Variable(inital)

#定义一个函数,用于构建卷积层,这里strides都是1 代表不遗漏的划过图像的每一个点
def conv2d(x,w):
    return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')

#定义一个函数,用于构建池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')


#placceholder 基本都是用于占位符 后面用到先定义
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1])                                #将数据reshape成适合的维度来进行后续的计算

#第一个卷积层的定义
W_conv1 = weight_variable([5,5,1,32])                                
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1)                #激活函数为relu
h_pool1 = max_pool_2x2(h_conv1)                                        #2x2 的max pooling 

#第二个卷积层的定义
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#第一个全连接层的定义
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

#将第一个全连接层 进行dropout 随机丢掉一些神经元不参与运算
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#第二个全连接层 分为十类数据 softmax后输出概率最大的数字
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))        #交叉熵
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)                                #这里用Adam优化器 优化 也可以使用随机梯度下降

correct_predition = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_predition,tf.float32))                                #准确率

tf.initialize_all_variables().run()                                                                #使用全局参数初始化器 并调用run方法 来进行参数初始化

for i in range(20000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})        #每一百次验证一下准确率
        print "step %d,training accuracy %g"%(i,train_accuracy)

    train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})                            #batch[0]   [1] 分别指数据维度 和标记维度 将数据传入定义好的优化器进行训练


print "test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0})    #开始测试数据 
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-04-26 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 主要的函数说明:
    • 参数说明:
      • 参数说明:
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档