前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >在物联网中应用机器学习:使用 Android Things 与 TensorFlow

在物联网中应用机器学习:使用 Android Things 与 TensorFlow

作者头像
未来守护者
发布2018-05-04 10:52:34
3.4K9
发布2018-05-04 10:52:34
举报
文章被收录于专栏:安全领域

本项目探讨如何将机器学习(Machine learning)应用到物联网(IoT,Internet of Things)中。我们将使用 Android Things 作为我们的物联网平台,并且采用 Google TensorFlow 作为我们的机器学习引擎。如今,机器学习与物联网都是技术话题中的大热门。下面是维基百科上对机器学习的一个简单定义

机器学习是计算机科学中的一个领域,它使计算机系统能够利用数据进行 “学习”(即逐步提高特定任务的性能),而不需要进行显式编程(Explicitly programmed)。

换句话说,在进行训练步骤以后,系统就可以预测结果(即使这不是专门为这些结果进行编程的)。另一方面,我们都了解物联网以及连接设备的概念。最有前途的话题之一便是如何将机器学习应用于物联网之中,以构建能够 “学习” 的专家系统。此外,该系统会运用这些知识来控制和管理实物。

下面列举一些应用到机器学习,以及物联网能产生重要价值的领域:

  • 预测维护(Predictive maintenance)中的工业物联网(IIoT,Industrial IoT)。
  • 在消费者物联网(Consumer IoT)中,机器学习可以使设备变得更加智能化,从而适应我们的习惯。

在本教程中,我们将探索如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中。这一 Android Things 物联网项目背后的基本思想就是,探索如何构建一个能够识别一些基本形状(比如箭头)并被控制的机器人小车(Robot car)。我们已经介绍过如何使用 Android Things 构建机器人小车,我建议您在开始此项目之前先阅读那篇教程。

本次机器学习和物联网项目主要涵盖以下主题:

  • 如何使用 Docker 配置 TensorFlow 环境
  • 如何训练 TensorFlow 系统
  • 如何集成 TensorFlow 与 Android Things
  • 如何使用 TensorFlow 输出结果来控制机器人小车

本项目衍生自 Android Things TensorFlow 图像分类器

我们开始吧!

如何在 Tensorflow 中创建一个图像分类器

在开始之前,我们有必要先安装并配置好 TensorFlow 环境。我并非机器学习专家,所以我需要找一些速成的东西并准备好使用,以便我们可以构建 TensorFlow 图像分类器。因此,我们可以使用 Docker 来运行一个搭载了 TensorFlow 的映像。照着以下步骤进行:

1. 克隆 TensorFlow 仓库:

代码语言:text
复制
git clone https://github.com/tensorflow/tensorflow.git
cd /tensorflow
git checkout v1.5.0

2. 创建一个目录(/tf-data),该目录将保存我们在项目中需要用到的所有文件。

3. 运行 Docker:

代码语言:text
复制
docker run -it \
--volume /tf-data:/tf-data \
--volume /tensorflow:/tensorflow \ 
--workdir /tensorflow tensorflow/tensorflow:1.5.0 bash

使用这些命令,我们就可以运行一个交互式 TensorFlow 环境并增加(Mount)一些我们将在项目中使用到的目录。

如何训练 TensorFlow

在 Android Things 系统能够识别图像之前,我们有必要先训练 TensorFlow 引擎,以构建其模型。以此为由,收集一些图片是有必要的。如前所述,我们希望使用箭头来控制 Android Things 机器人小车 —— 所以我们必须收集至少四种类型的箭头:

  • 向上箭头
  • 向下箭头
  • 左箭头
  • 右箭头

为训练该系统,我们有必要对这四种不同的图像类别创建一个“知识库”。在 /tf-data 中一个名为 images 的目录下创建四个目录,命名如下:

  • up-arrow
  • down-arrow
  • left-arrow
  • right-arrow

现在是时候去搜集图像资源了。我使用的是 Google 图片搜索,您也可以使用其他方法进行搜集。为了简化图片下载过程,您应该安装 Chrome 插件,它能够一键下载所有图片。可别忘了,您下载的图像越多,其训练过程(Training process)越好(即使创建模型的时间可能会有所增加)。

打开浏览器,开始查找以下四类图像:

每个类别我分别下载了 80 张图。我并不关心图片的扩展。

一旦所有类别都有其图像,请按照以下步骤操作(在 Docker 界面中):

代码语言:text
复制
python /tensorflow/examples/image_retraining/retrain.py \ 
--bottleneck_dir=tf_files/bottlenecks \
--how_many_training_steps=4000 \
--output_graph=/tf-data/retrained_graph.pb \
--output_labels=/tf-data/retrained_labels.txt \
--image_dir=/tf-data/images

这操作可能需要花费一些时间,所以要耐心等待。最后,在你的文件夹 /tf-data 中应有两个文件:

  1. retrained_graph.pb
  2. retrained_labels.txt

第一个文件包含我们的模型,这是 TensorFlow 训练过程的结果。而第二个文件则包含了与我们的四个图像类别相关的标签。

如何测试 Tensorflow 模型

如果你想测试模型,以检查一切是否正常,你可以使用以下命令:

代码语言:text
复制
python scripts.label_image \
--graph=/tf-data/retrained-graph.pb \
--image=/tf-data/images/[category]/[image_name.jpg]

优化模型

在能够使用这个 TensorFlow 模型到 Android Things 项目中之前,我们有必要优化它:

代码语言:javascript
复制
python /tensorflow/python/tools/optimize_for_inference.py \
--input=/tf-data/retrained_graph.pb \
--output=/tf-data/opt_graph.pb \
--input_names="Mul" \
--output_names="final_result"

这就是我们的模型。我们将使用此模型将机器学习应用于物联网(即集成 Android Things 与 TensorFlow)。其目标是为 Android Things 应用提供智能识别箭头图像,并作出相应反应,从而控制机器人小车的方向。

如果您想了解更多关于 TensorFlow 的细节,以及如何生成模型,请查看官方文档和这个教程

如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中

一旦 TensorFlow 数据模型准备就绪,我们就可以进入下一步:如何集成 Android Things 与 TensorFlow。为达成这一目的,我们可以将此任务分为两步:

  1. 硬件部分,我们将电机和其他外围设备(Peripheral)连接到 Android Things 板上
  2. 实现应用程序

Android Things 原理图

在深入探讨如何连接外围设备之前,我们先看看下面这个 Android Things 项目中使用的组件列表:

  1. Android Things 板(树莓派 3,Raspberry Pi 3)
  2. 树莓派相机
  3. 一个 LED 灯
  4. LN298N 双H桥(用以控制电机)
  5. 带两个轮子的机器人小车底盘

我不在此介绍如何使用 Android Things 控制电机,因为我们已经在之前的文章中介绍过这一点。

以下是原理图:

上图中,相机组件并未表现出来。其最终的结果如下:

基于 TensorFlow 实现 Android Things App

最后一步便是实现 Android Things 应用程序。为此,我们可以重用 GitHub 上名为 TensorFlow 图像分类器示例的示例项目。在开始之前,先克隆 GitHub 仓库,以便您可以修改源代码。

该 Android Things 应用与原来的应用有所不同,在于:

  1. 它不使用按钮来启动相机捕捉图像
  2. 它使用不同的模型
  3. 它使用一个闪烁的 LED 进行通知,摄像机在 LED 停止闪烁后拍摄照片
  4. 它在 TensorFlow 检测到图像(箭头)时控制电机。此外,在从步骤 3 开始循环之前,先打开电机 5 秒

要处理闪烁的 LED,请使用以下代码:

代码语言:javascript
复制
private Handler blinkingHandler = new Handler();
private Runnable blinkingLED = new Runnable() {
  @Override
  public void run() {
    try {
     // If the motor is running the app does not start the cam
     if (mc.getStatus())
       return ;
     Log.d(TAG, "Blinking..");
     mReadyLED.setValue(!mReadyLED.getValue());
     if (currentValue <= NUM_OF_TIMES) {
       currentValue++;
       blinkingHandler.postDelayed(blinkingLED, 
                       BLINKING_INTERVAL_MS);
     }
     else {
      mReadyLED.setValue(false);
      currentValue = 0;
      mBackgroundHandler.post(mBackgroundClickHandler);
     }
   } catch (IOException e) {
     e.printStackTrace();
   }
  }
};

当 LED 停止闪烁时,应用程序将捕获图像。

现在有必要关注如何根据检测到的图像来控制电机。修改方法如下:

代码语言:javascript
复制
@Override
public void onImageAvailable(ImageReader reader) {
  final Bitmap bitmap;
   try (Image image = reader.acquireNextImage()) {
     bitmap = mImagePreprocessor.preprocessImage(image);
   }
   final List<Classifier.Recognition> results = 
      mTensorFlowClassifier.doRecognize(bitmap);
   Log.d(TAG, 
    "Got the following results from Tensorflow: " + results);
   // Check the result
   if (results == null || results.size() == 0) {
     Log.d(TAG, "No command..");
     blinkingHandler.post(blinkingLED);
     return ;
    }
    Classifier.Recognition rec = results.get(0);
    Float confidence = rec.getConfidence();
    Log.d(TAG, "Confidence " + confidence.floatValue());
    if (confidence.floatValue() < 0.55) {
     Log.d(TAG, "Confidence too low..");
     blinkingHandler.post(blinkingLED);
     return ;
    }
    String command = rec.getTitle();
    Log.d(TAG, "Command: " + rec.getTitle());
    if (command.indexOf("down") != -1)
       mc.backward();
    else if (command.indexOf("up") != -1)
       mc.forward();
    else if (command.indexOf("left") != -1)
       mc.turnLeft();
    else if (command.indexOf("right") != -1)
       mc.turnRight();
}

在这种方法中,当 TensorFlow 返回匹配捕获图像的可能标签后,应用程序会将结果与可能的方向进行比较,从而控制电机。

最后,是时候使用在刚开始时创建的模型了。拷贝 assets 文件夹下的 opt_graph.pb 与 reatrained_labels.txt 文件,并替换现有文件。

打开 Helper.java 并修改以下几行:

代码语言:javascript
复制
public static final int IMAGE_SIZE = 299;
private static final int IMAGE_MEAN = 128;
private static final float IMAGE_STD = 128;
private static final String LABELS_FILE = "retrained_labels.txt";
public static final String MODEL_FILE = "file:///android_asset/opt_graph.pb";
public static final String INPUT_NAME = "Mul";
public static final String OUTPUT_OPERATION = "output";
public static final String OUTPUT_NAME = "final_result";

运行应用程序,试试向相机展示箭头,并检查结果。机器人小车必须按照所示的箭头进行移动。

小结

在本教程的最后,我们介绍了如何运用 Android Things 与 TensorFlow 将机器学习应用到物联网中。我们可以使用图像控制机器人小车,并根据显示的图像移动机器人小车。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 如何在 Tensorflow 中创建一个图像分类器
    • 如何训练 TensorFlow
      • 如何测试 Tensorflow 模型
        • 优化模型
        • 如何使用 Android Things 和 TensorFlow 将机器学习应用到物联网中
          • Android Things 原理图
            • 基于 TensorFlow 实现 Android Things App
            • 小结
            相关产品与服务
            物联网
            腾讯连连是腾讯云物联网全新商业品牌,它涵盖一站式物联网平台 IoT Explorer,连连官方微信小程序和配套的小程序 SDK、插件和开源 App,并整合腾讯云内优势产品能力,如大数据、音视频、AI等。同时,它打通腾讯系 C 端内容资源,如QQ音乐、微信支付、微保、微众银行、医疗健康等生态应用入口。提供覆盖“云-管-边-端”的物联网基础设施,面向“消费物联”和 “产业物联”两大赛道提供全方位的物联网产品和解决方案,助力企业高效实现数字化转型。
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档