前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >1分钟了解协同过滤,pm都懂了

1分钟了解协同过滤,pm都懂了

作者头像
架构师之路
发布2018-03-27 14:46:05
7270
发布2018-03-27 14:46:05
举报
文章被收录于专栏:架构师之路

工程架构方向的程序员,看到推荐/搜索/广告等和算法相关的技术,心中或多或少有一丝胆怯。但认真研究之后,发现其实没有这么难。

今天的1分钟系列,给大家介绍下推荐系统中的“协同过滤”,绝无任何公式,保证大伙弄懂。

什么是协同过滤(Collaborative Filtering)?

:通过找到兴趣相投,或者有共同经验的群体,来向用户推荐感兴趣的信息。

举例,如何协同过滤,来对用户A进行电影推荐?

:简要步骤如下

  • 找到用户A(user_id_1)的兴趣爱好
  • 找到与用户A(user_id_1)具有相同电影兴趣爱好的用户群体集合Set<user_id>
  • 找到该群体喜欢的电影集合Set<movie_id>
  • 将这些电影Set<Movie_id>推荐给用户A(user_id_1)

具体实施步骤如何?

:简要步骤如下

(1)画一个大表格,横坐标是所有的movie_id,纵坐标所有的user_id,交叉处代表这个用户喜爱这部电影

如上表:

  • 横坐标,假设有10w部电影,所以横坐标有10w个movie_id,数据来源自数据库
  • 纵坐标,假设有100w个用户,所以纵坐标有100w个user_id,数据也来自数据库
  • 交叉处,“1”代表用户喜爱这部电影,数据来自日志

画外音:什么是“喜欢”,需要人为定义,例如浏览过,查找过,点赞过,反正日志里有这些数据

(2)找到用户A(user_id_1)的兴趣爱好

如上表,可以看到,用户A喜欢电影{m1, m2, m3}

(3)找到与用户A(user_id_1)具有相同电影兴趣爱好的用户群体集合Set<user_id>

如上表,可以看到,喜欢{m1, m2, m3}的用户,除了u1,还有{u2, u3}

(4)找到该群体喜欢的电影集合Set<movie_id>

如上表,具备相同喜好的用户群里{u2, u3},还喜好的电影集合是{m4, m5}

画外音:“协同”就体现在这里。

(5)未来用户A(use_id_1)来访问网站时,要推荐电影{m4, m5}给ta。

协同过滤大致原理如上,希望大家有收获。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 架构师之路 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档