前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习之图像的数据增强

深度学习之图像的数据增强

作者头像
Gxjun
发布2018-03-27 12:15:26
2.1K0
发布2018-03-27 12:15:26
举报
文章被收录于专栏:ml

   在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强,

数据增强,常用的方式,就是旋转图像,剪切图像,改变图像色差,扭曲图像特征,改变图像尺寸大小,增强图像噪音(一般使用高斯噪音,盐椒噪音)等.

但是需要注意,不要加入其他图像轮廓的噪音.

  对于常用的图像的数据增强的实现,如下:

代码语言:javascript
复制
  1 # -*- coding:utf-8 -*-
  2 """数据增强
  3    1. 翻转变换 flip
  4    2. 随机修剪 random crop
  5    3. 色彩抖动 color jittering
  6    4. 平移变换 shift
  7    5. 尺度变换 scale
  8    6. 对比度变换 contrast
  9    7. 噪声扰动 noise
 10    8. 旋转变换/反射变换 Rotation/reflection
 11    author: XiJun.Gong
 12    date:2016-11-29
 13 """
 14 
 15 from PIL import Image, ImageEnhance, ImageOps, ImageFile
 16 import numpy as np
 17 import random
 18 import threading, os, time
 19 import logging
 20 
 21 logger = logging.getLogger(__name__)
 22 ImageFile.LOAD_TRUNCATED_IMAGES = True
 23 
 24 
 25 class DataAugmentation:
 26     """
 27     包含数据增强的八种方式
 28     """
 29 
 30 
 31     def __init__(self):
 32         pass
 33 
 34     @staticmethod
 35     def openImage(image):
 36         return Image.open(image, mode="r")
 37 
 38     @staticmethod
 39     def randomRotation(image, mode=Image.BICUBIC):
 40         """
 41          对图像进行随机任意角度(0~360度)旋转
 42         :param mode 邻近插值,双线性插值,双三次B样条插值(default)
 43         :param image PIL的图像image
 44         :return: 旋转转之后的图像
 45         """
 46         random_angle = np.random.randint(1, 360)
 47         return image.rotate(random_angle, mode)
 48 
 49     @staticmethod
 50     def randomCrop(image):
 51         """
 52         对图像随意剪切,考虑到图像大小范围(68,68),使用一个一个大于(36*36)的窗口进行截图
 53         :param image: PIL的图像image
 54         :return: 剪切之后的图像
 55 
 56         """
 57         image_width = image.size[0]
 58         image_height = image.size[1]
 59         crop_win_size = np.random.randint(40, 68)
 60         random_region = (
 61             (image_width - crop_win_size) >> 1, (image_height - crop_win_size) >> 1, (image_width + crop_win_size) >> 1,
 62             (image_height + crop_win_size) >> 1)
 63         return image.crop(random_region)
 64 
 65     @staticmethod
 66     def randomColor(image):
 67         """
 68         对图像进行颜色抖动
 69         :param image: PIL的图像image
 70         :return: 有颜色色差的图像image
 71         """
 72         random_factor = np.random.randint(0, 31) / 10.  # 随机因子
 73         color_image = ImageEnhance.Color(image).enhance(random_factor)  # 调整图像的饱和度
 74         random_factor = np.random.randint(10, 21) / 10.  # 随机因子
 75         brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor)  # 调整图像的亮度
 76         random_factor = np.random.randint(10, 21) / 10.  # 随机因1子
 77         contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor)  # 调整图像对比度
 78         random_factor = np.random.randint(0, 31) / 10.  # 随机因子
 79         return ImageEnhance.Sharpness(contrast_image).enhance(random_factor)  # 调整图像锐度
 80 
 81     @staticmethod
 82     def randomGaussian(image, mean=0.2, sigma=0.3):
 83         """
 84          对图像进行高斯噪声处理
 85         :param image:
 86         :return:
 87         """
 88 
 89         def gaussianNoisy(im, mean=0.2, sigma=0.3):
 90             """
 91             对图像做高斯噪音处理
 92             :param im: 单通道图像
 93             :param mean: 偏移量
 94             :param sigma: 标准差
 95             :return:
 96             """
 97             for _i in range(len(im)):
 98                 im[_i] += random.gauss(mean, sigma)
 99             return im
100 
101         # 将图像转化成数组
102         img = np.asarray(image)
103         img.flags.writeable = True  # 将数组改为读写模式
104         width, height = img.shape[:2]
105         img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma)
106         img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma)
107         img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma)
108         img[:, :, 0] = img_r.reshape([width, height])
109         img[:, :, 1] = img_g.reshape([width, height])
110         img[:, :, 2] = img_b.reshape([width, height])
111         return Image.fromarray(np.uint8(img))
112 
113     @staticmethod
114     def saveImage(image, path):
115         image.save(path)
116 
117 
118 def makeDir(path):
119     try:
120         if not os.path.exists(path):
121             if not os.path.isfile(path):
122                 # os.mkdir(path)
123                 os.makedirs(path)
124             return 0
125         else:
126             return 1
127     except Exception, e:
128         print str(e)
129         return -2
130 
131 
132 def imageOps(func_name, image, des_path, file_name, times=5):
133     funcMap = {"randomRotation": DataAugmentation.randomRotation,
134                "randomCrop": DataAugmentation.randomCrop,
135                "randomColor": DataAugmentation.randomColor,
136                "randomGaussian": DataAugmentation.randomGaussian
137                }
138     if funcMap.get(func_name) is None:
139         logger.error("%s is not exist", func_name)
140         return -1
141 
142     for _i in range(0, times, 1):
143         new_image = funcMap[func_name](image)
144         DataAugmentation.saveImage(new_image, os.path.join(des_path, func_name + str(_i) + file_name))
145 
146 
147 opsList = {"randomRotation", "randomCrop", "randomColor", "randomGaussian"}
148 
149 
150 def threadOPS(path, new_path):
151     """
152     多线程处理事务
153     :param src_path: 资源文件
154     :param des_path: 目的地文件
155     :return:
156     """
157     if os.path.isdir(path):
158         img_names = os.listdir(path)
159     else:
160         img_names = [path]
161     for img_name in img_names:
162         print img_name
163         tmp_img_name = os.path.join(path, img_name)
164         if os.path.isdir(tmp_img_name):
165             if makeDir(os.path.join(new_path, img_name)) != -1:
166                 threadOPS(tmp_img_name, os.path.join(new_path, img_name))
167             else:
168                 print 'create new dir failure'
169                 return -1
170                 # os.removedirs(tmp_img_name)
171         elif tmp_img_name.split('.')[1] != "DS_Store":
172             # 读取文件并进行操作
173             image = DataAugmentation.openImage(tmp_img_name)
174             threadImage = [0] * 5
175             _index = 0
176             for ops_name in opsList:
177                 threadImage[_index] = threading.Thread(target=imageOps,
178                                                        args=(ops_name, image, new_path, img_name,))
179                 threadImage[_index].start()
180                 _index += 1
181                 time.sleep(0.2)
182 
183 
184 if __name__ == '__main__':
185     threadOPS("/home/pic-image/train/12306train",
186               "/home/pic-image/train/12306train3")
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-12-01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档