前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据挖掘之聚类算法K-Means总结

数据挖掘之聚类算法K-Means总结

作者头像
Gxjun
发布2018-03-27 12:11:41
1K0
发布2018-03-27 12:11:41
举报
文章被收录于专栏:ml

  由于项目需要,需要对数据进行处理,故而又要滚回来看看paper,做点小功课,这篇文章只是简单的总结一下基础的Kmeans算法思想以及实现;

正文:

    1.基础Kmeans算法.

  Kmeans算法的属于基础的聚类算法,它的核心思想是: 从初始的数据点集合,不断纳入新的点,然后再从新计算集合的“中心”,再以改点为初始点重新纳入新的点到集合,在计算”中心”,依次往复,直到这些集合不再都不能再纳入新的数据为止.

图解:

    假如我们在坐标轴中存在如下A,B,C,D,E一共五个点,然后我们初始化(或者更贴切的说指定)两个特征点(意思就是将五个点分成两个类),采用欧式距离计算距离.

注意的点:

    1.中心计算方式不固定,常用的有使用距离(欧式距离,马式距离,曼哈顿距离,明考斯距离)的中点,还有重量的质心,还有属性值的均值等等,虽然计算方式不同,但是整体上Kmeans求解的思路相同.

    2.初始化的特征点(选取的K个特征数据)会对整个收据聚类产生影响.所以为了得到需要的结果,需要预设指定的凸显的特征点,然后再用Kmeans进行聚类.

代码实现:   
代码语言:javascript
复制
  1 package com.data.algorithm;
  2 
  3 import java.util.ArrayList;
  4 import java.util.List;
  5 
  6 /**
  7  * *********************************************************
  8  * <p/>
  9  * Author:     XiJun.Gong
 10  * Date:       2017-01-17 15:57
 11  * Version:    default 1.0.0
 12  * Class description:
 13  * <p/>
 14  * *********************************************************
 15  */
 16 public class Kmeans {
 17     private final double exp = 1e-6;
 18 
 19     private List<KMeanData> topk;
 20 
 21     public List<KMeanData> getTopk() {
 22         return topk;
 23     }
 24 
 25     public void setTopk(List<KMeanData> topk) {
 26         this.topk = topk;
 27     }
 28 
 29     class KMeanData {
 30 
 31         private float x;    //x坐标
 32         private float y;    //y坐标
 33         private int flag;   //隶属于哪一个簇
 34 
 35         public int getFlag() {
 36             return flag;
 37         }
 38 
 39         public void setFlag(int flag) {
 40             this.flag = flag;
 41         }
 42 
 43         public float getX() {
 44             return x;
 45         }
 46 
 47         public void setX(float x) {
 48             this.x = x;
 49         }
 50 
 51         public float getY() {
 52             return y;
 53         }
 54 
 55         public void setY(float y) {
 56             this.y = y;
 57         }
 58     }
 59 
 60     public boolean max(float a, float b) {
 61         return a > b + exp ? true : false;
 62     }
 63 
 64     public float distance(KMeanData a, KMeanData b) {
 65 
 66         return (float) Math.sqrt(Math.pow(a.getX() - b.getX(), 2)
 67                 + Math.pow(a.getY() - b.getY(), 2));
 68     }
 69 
 70     public boolean Kequal(KMeanData a, KMeanData b) {
 71         if (Math.abs(a.getY() - b.getY()) < exp && Math.abs(a.getX() - b.getX()) < exp)
 72             return true;
 73         return false;
 74     }
 75 
 76     public KMeanData[] produce(int size, int range) {
 77         KMeanData[] kmData = new KMeanData[size];
 78         for (int i = 0; i < size; i++) {
 79             kmData[i] = new KMeanData();
 80             kmData[i].setX((float) (Math.random() * range));
 81             kmData[i].setY(((float) Math.random() * range));
 82             kmData[i].setFlag(0);
 83         }
 84         return kmData;
 85     }
 86 
 87     public void kprint(KMeanData[] data, final int k) {
 88         for (int i = 1; i <= k; i++) {
 89             System.out.println("第" + i + "簇集合: ( " + this.topk.get(i - 1).getX() + " , " + this.topk.get(i - 1).getY() + " )");
 90             for (int j = 0; j < data.length; j++) {
 91                 if (data[j].getFlag() == i) {
 92                     System.out.print("( " + data[j].getX() + " , " + data[j].getY() + " )");
 93                 }
 94             }
 95             System.out.println("\n");
 96         }
 97     }
 98 
 99     public KMeanData[] kmeans(KMeanData[] data, final int k) {
100         if (null == data || data.length < 1) {
101             System.out.println("data is empty");
102             return null;
103         }
104         if (k > data.length) {
105             System.out.println("k " + k + " is too larger than data size " + data.length);
106             return null;
107         }
108        /*随机选取k个点*/
109         topk = new ArrayList<KMeanData>();
110         int stride = data.length / k;
111         //均值步长取k的初始簇
112         for (int i = 0; i < data.length; i += stride) {
113             data[i].setFlag((i / stride) + 1);
114             topk.add(data[i]);
115         }
116         //聚合
117         while (true) {
118             for (int i = 0; i < data.length; i++) {
119                 float min = (float) 1e9, dist;
120                 int pos = 0;
121                 for (KMeanData kter : topk) {
122                     if (!Kequal(kter, data[i]) && min > (dist = distance(data[i], kter))) {
123                         min = dist;
124                         pos = i;
125                     }
126                 }
127                 data[pos].setFlag((i / stride) + 1);
128             }
129             //重新计算质心
130             KMeanData[] ntopk = new KMeanData[k + 1];
131             int[] kcnt = new int[k + 1];
132             for (int i = 0; i < data.length; i++) {
133                 kcnt[data[i].getFlag()]++;
134                 ntopk[data[i].getFlag()] = new KMeanData();
135                 ntopk[data[i].getFlag()].setX(ntopk[data[i].getFlag()].getX() + data[i].getX());
136                 ntopk[data[i].getFlag()].setY(ntopk[data[i].getFlag()].getY() + data[i].getY());
137             }
138             for (int i = 1; i <= k; i++) {
139                 ntopk[i].setX(ntopk[i].getX() / kcnt[i]);
140             }
141             //判断一下是否是已经收敛了
142             boolean flag = false;
143             for (int i = 0; i < k; i++) {
144                 if (!Kequal(topk.get(i), ntopk[i + 1])) {
145                     flag = true;
146                     topk.set(i, ntopk[i + 1]);
147                 }
148             }
149             if (!flag) break;
150         }
151         return data;
152     }
153 }
代码语言:javascript
复制
 1 package com.data.algorithm;
 2 
 3 
 4 /**
 5  * *********************************************************
 6  * <p/>
 7  * Author:     XiJun.Gong
 8  * Date:       2017-01-17 17:57
 9  * Version:    default 1.0.0
10  * Class description:
11  * <p/>
12  * *********************************************************
13  */
14 public class Main {
15     public static void main(String args[]) {
16         Kmeans kmeans = new Kmeans();
17         kmeans.kprint(kmeans.kmeans(kmeans.produce(100, 60), 10), 10);
18     }
19 }
代码语言:javascript
复制
 1 第1簇集合: ( 2.8443472 , 14.963217 )
 2 ( 19.135574 , 48.378784 )( 31.432192 , 17.925615 )( 4.5895605 , 11.125353 )( 2.1719377 , 22.074598 )( 14.182562 , 34.964306 )( 21.141474 , 39.34452 )( 39.017117 , 56.293888 )( 26.028856 , 36.239174 )( 27.319502 , 55.982365 )( 28.443472 , 14.963217 )
 3 
 4 第2簇集合: ( 0.8835429 , 18.1895 )
 5 ( 22.023354 , 41.003338 )( 23.229214 , 54.271046 )( 14.30185 , 48.939583 )( 2.4819863 , 27.38683 )( 11.668434 , 57.642452 )( 49.092728 , 55.405685 )( 23.38715 , 25.048647 )( 19.695707 , 45.738415 )( 26.929798 , 58.74604 )( 8.835429 , 18.1895 )
 6 
 7 第3簇集合: ( 0.74630326 , 45.51654 )
 8 ( 57.08818 , 41.345074 )( 14.97413 , 36.16043 )( 54.09579 , 36.052063 )( 24.645374 , 57.247772 )( 58.734444 , 27.05567 )( 13.617909 , 16.157734 )( 30.897354 , 31.427551 )( 33.367496 , 33.386326 )( 33.451378 , 53.20307 )( 7.4630327 , 45.51654 )
 9 
10 第4簇集合: ( 1.968404 , 33.967808 )
11 ( 5.487106 , 36.14787 )( 45.656933 , 17.261345 )( 28.166676 , 29.430775 )( 13.528182 , 41.53365 )( 22.37523 , 30.01359 )( 52.460278 , 1.8516384 )( 10.2530575 , 47.032955 )( 28.544668 , 41.290382 )( 22.431509 , 6.789385 )( 19.68404 , 33.967808 )
12 
13 第5簇集合: ( 1.6082747 , 29.020123 )
14 ( 59.416927 , 22.173529 )( 27.72831 , 48.705555 )( 59.062904 , 27.449326 )( 6.909786 , 30.03262 )( 42.442226 , 8.278798 )( 51.15263 , 59.101868 )( 7.6760554 , 57.712944 )( 41.01523 , 56.367043 )( 55.39889 , 41.588028 )( 16.082747 , 29.020123 )
15 
16 第6簇集合: ( 3.2178578 , 4.2711926 )
17 ( 0.53403753 , 21.35647 )( 50.560753 , 9.216217 )( 52.925297 , 18.846382 )( 48.62932 , 54.015606 )( 14.116821 , 35.78354 )( 1.8006643 , 44.74982 )( 39.19404 , 1.1245662 )( 43.081966 , 12.171013 )( 51.094734 , 31.339842 )( 32.178577 , 4.2711926 )
18 
19 第7簇集合: ( 4.042007 , 31.607666 )
20 ( 50.17044 , 32.749535 )( 52.281467 , 46.060326 )( 34.024357 , 10.856017 )( 32.16631 , 54.869526 )( 11.773177 , 19.33069 )( 7.3901944 , 30.897972 )( 42.876205 , 0.90321934 )( 1.3056514 , 40.74958 )( 53.546345 , 43.86588 )( 40.42007 , 31.607666 )
21 
22 第8簇集合: ( 1.5596402 , 29.19249 )
23 ( 43.503544 , 21.245668 )( 59.312412 , 35.47328 )( 12.452401 , 14.911624 )( 57.877514 , 46.545307 )( 9.161788 , 53.974636 )( 28.102057 , 40.347496 )( 56.39533 , 15.801934 )( 48.884666 , 50.610317 )( 32.18778 , 8.80818 )( 15.596402 , 29.19249 )
24 
25 第9簇集合: ( 2.5482278 , 36.367596 )
26 ( 52.08338 , 38.900063 )( 46.13634 , 45.479736 )( 37.948357 , 56.04102 )( 27.17064 , 54.725323 )( 56.840836 , 23.867615 )( 53.052013 , 19.699564 )( 48.167595 , 33.628963 )( 5.600155 , 26.792658 )( 8.978055 , 53.935356 )( 25.482279 , 36.367596 )
27 
28 第10簇集合: ( 1.3590596 , 35.720345 )
29 ( 35.742085 , 9.892197 )( 35.366455 , 47.68727 )( 6.3293104 , 39.160095 )( 11.329118 , 21.142208 )( 48.153606 , 18.321869 )( 42.181618 , 44.782696 )( 57.56768 , 30.652052 )( 26.439352 , 38.31146 )( 31.588612 , 55.974304 )( 13.590596 , 35.720345 )

   2. 改进的KMeans算法;

  KMeans算法存在很多很多的改进版, 比如有优化最开始的K个特征数据选取的,还有如何减少计算量的,这里就介绍一下最后一种变种.

2.1 Mini Batch K-Means;

    Mini Batch K-Means思想核心: 在求解稳定的聚类中心时,每次随机抽取一批数据,然后进行Kmean计算,然后直至中心点稳定之后,在将所有的数据依据这些中心点进行分类,从而达到和KMeans一样的效果,同时有大大的减少了中间的计算量.

   应用的范围: 在面对巨大的数据量时,可以考虑使用这种思路.

参考文献:

  http://image.hanspub.org:8080/pdf/CSA20160900000_76874550.pdf

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-01-22 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 正文:
    • 代码实现:   
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档