前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习优化算法之爬山算法小结

机器学习优化算法之爬山算法小结

作者头像
Gxjun
发布2018-03-27 10:38:14
3K0
发布2018-03-27 10:38:14
举报
文章被收录于专栏:ml

 简言

       机器学习的项目,不可避免的需要补充一些优化算法,对于优化算法,爬山算法还是比较重要的.鉴于此,花了些时间仔细阅读了些爬山算法的paper.基于这些,做一些总结.

 目录

  1. 爬山算法简单描述

    2. 爬山算法的主要算法

        2.1 首选爬山算法

        2.2 最陡爬山算法

        2.3 随机重新开始爬山算法

        2.4 模拟退火算法(也是爬山算法)

      3. 实例求解

 正文

    爬山算法,是一种局部贪心的最优算法. 该算法的主要思想是:每次拿相邻点与当前点进行比对,取两者中较优者,作为爬坡的下一步.

举一个例子,求解下面表达式

 的最大值. 且假设 x,y均按为0.1间隔递增.

为了更好的描述,我们先使用pyhton画出该函数的图像:

图像的python代码:

代码语言:javascript
复制
 1 # encoding:utf8
 2 from matplotlib import pyplot as plt
 3 import numpy as np
 4 from mpl_toolkits.mplot3d import Axes3D
 5 
 6 
 7 def func(X, Y, x_move=0, y_move=0):
 8     def mul(X, Y, alis=1):
 9         return alis * np.exp(-(X * X + Y * Y))
10 
11     return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
12 
13 
14 def show(X, Y):
15     fig = plt.figure()
16     ax = Axes3D(fig)
17     X, Y = np.meshgrid(X, Y)
18     Z = func(X, Y, 1.7, 1.7)
19     plt.title("demo_hill_climbing")
20     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21     ax.set_xlabel('x label', color='r')
22     ax.set_ylabel('y label', color='g')
23     ax.set_zlabel('z label', color='b')
24     # 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
25     # ax.scatter(X,Y,Z,c='r') #绘点
26     plt.show()
27 
28 if __name__ == '__main__':
29     X = np.arange(-2, 4, 0.1)
30     Y = np.arange(-2, 4, 0.1)
31 
32     show(X,Y)

     对于上面这个问题,我们使用爬山算法该如何求解呢? 下面我们从爬山算法中的几种方式分别求解一下这个小题.

  1. 首选爬山算法

  依次寻找该点X的邻近点中首次出现的比点X价值高的点,并将该点作为爬山的点(此处说的价值高,在该题中是指Z或f(x,y)值较大). 依次循环,直至该点的邻近点中不再有比其大的点. 我们成为该点就是山的顶点,又称为最优点. 

     那么解题思路就有:

     1.  随机选择一个登山的起点S(x0,y0,z0),并以此为起点开始登山.直至"登顶".

   下面是我们实现的代码:

代码语言:javascript
复制
 1 # encoding:utf8
 2 from random import random, randint
 3 
 4 from matplotlib import pyplot as plt
 5 import numpy as np
 6 from mpl_toolkits.mplot3d import Axes3D
 7 
 8 
 9 def func(X, Y, x_move=1.7, y_move=1.7):
10     def mul(X, Y, alis=1):
11         return alis * np.exp(-(X * X + Y * Y))
12 
13     return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14 
15 
16 def show(X, Y, Z):
17     fig = plt.figure()
18     ax = Axes3D(fig)
19     plt.title("demo_hill_climbing")
20     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21     ax.set_xlabel('x label', color='r')
22     ax.set_ylabel('y label', color='g')
23     ax.set_zlabel('z label', color='b')
24     # ax.scatter(X,Y,Z,c='r') #绘点
25     plt.show()
26 
27 
28 def drawPaht(X, Y, Z,px,py,pz):
29     fig = plt.figure()
30     ax = Axes3D(fig)
31     plt.title("demo_hill_climbing")
32     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33     ax.set_xlabel('x label', color='r')
34     ax.set_ylabel('y label', color='g')
35     ax.set_zlabel('z label', color='b')
36     ax.plot(px,py,pz,'r.') #绘点
37     plt.show()
38 
39 
40 def hill_climb(X, Y):
41     global_X = []
42     global_Y = []
43 
44     len_x = len(X)
45     len_y = len(Y)
46     # 随机登山点
47     st_x = randint(0, len_x-1)
48     st_y = randint(0, len_y-1)
49 
50     def argmax(stx, sty, alisx=0, alisy=0):
51         cur = func(X[0][st_x], Y[st_y][0])
52         next = func(X[0][st_x + alisx], Y[st_y + alisy][0])
53 
54         return cur < next and True or False
55 
56     while (len_x > st_x >= 0) or (len_y > st_y >= 0):
57         if st_x + 1 < len_x and argmax(st_x, st_y, 1):
58             st_x += 1
59         elif st_y + 1 < len_x and argmax(st_x, st_y, 0, 1):
60             st_y += 1
61         elif st_x >= 1 and argmax(st_x, st_y, -1):
62             st_x -= 1
63         elif st_y >= 1 and argmax(st_x, st_y, 0, -1):
64             st_y -= 1
65         else:
66             break
67         global_X.append(X[0][st_x])
68         global_Y.append(Y[st_y][0])
69     return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
70 
71 
72 if __name__ == '__main__':
73     X = np.arange(-2, 4, 0.1)
74     Y = np.arange(-2, 4, 0.1)
75     X, Y = np.meshgrid(X, Y)
76     Z = func(X, Y, 1.7, 1.7)
77     px, py, maxhill = hill_climb(X, Y)
78     print px,py,maxhill
79     drawPaht(X, Y, Z,px,py,func(np.array(px), np.array(py), 1.7, 1.7))

对比几次运行的结果:

从上图中,我们可以比较清楚的观察到,首选爬山算法的缺陷.

2.那么最陡爬山算法呢?

   简单描述:

              最陡爬山算法是在首选爬山算法上的一种改良,它规定每次选取邻近点价值最大的那个点作为爬上的点.

   下面我们来实现一下它:

代码语言:javascript
复制
 1 # encoding:utf8
 2 from random import random, randint
 3 
 4 from matplotlib import pyplot as plt
 5 import numpy as np
 6 from mpl_toolkits.mplot3d import Axes3D
 7 
 8 
 9 def func(X, Y, x_move=1.7, y_move=1.7):
10     def mul(X, Y, alis=1):
11         return alis * np.exp(-(X * X + Y * Y))
12 
13     return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14 
15 
16 def show(X, Y, Z):
17     fig = plt.figure()
18     ax = Axes3D(fig)
19     plt.title("demo_hill_climbing")
20     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21     ax.set_xlabel('x label', color='r')
22     ax.set_ylabel('y label', color='g')
23     ax.set_zlabel('z label', color='b')
24     # ax.scatter(X,Y,Z,c='r') #绘点
25     plt.show()
26 
27 
28 def drawPaht(X, Y, Z, px, py, pz):
29     fig = plt.figure()
30     ax = Axes3D(fig)
31     plt.title("demo_hill_climbing")
32     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33     ax.set_xlabel('x label', color='r')
34     ax.set_ylabel('y label', color='g')
35     ax.set_zlabel('z label', color='b')
36     ax.plot(px, py, pz, 'r.')  # 绘点
37     plt.show()
38 
39 
40 def hill_climb(X, Y):
41     global_X = []
42     global_Y = []
43 
44     len_x = len(X)
45     len_y = len(Y)
46     # 随机登山点
47     st_x = randint(0, len_x - 1)
48     st_y = randint(0, len_y - 1)
49 
50     def argmax(stx, sty, alisx, alisy):
51         cur = func(X[0][stx], Y[sty][0])
52         next = func(X[0][alisx], Y[alisy][0])
53         if cur < next:
54             return alisx, alisy
55         return stx, sty
56         #return cur < next and alisx, alisy or stx, sty
57 
58     tmp_x = st_x
59     tmp_y = st_y
60     while (len_x > st_x >= 0) or (len_y > st_y >= 0):
61         if st_x + 1 < len_x:
62             tmp_x, tmp_y = argmax(tmp_x, tmp_y, (st_x + 1), st_y)
63 
64         if st_x >= 1:
65             tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x - 1, st_y)
66 
67         if st_y + 1 < len_x:
68             tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y + 1)
69 
70         if st_y >= 1:
71             tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y - 1)
72 
73         if tmp_x != st_x or tmp_y != st_y:
74             st_x = tmp_x
75             st_y = tmp_y
76         else:
77             break
78         global_X.append(X[0][st_x])
79         global_Y.append(Y[st_y][0])
80     return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
81 
82 
83 if __name__ == '__main__':
84     X = np.arange(-2, 4, 0.1)
85     Y = np.arange(-2, 4, 0.1)
86     X, Y = np.meshgrid(X, Y)
87     Z = func(X, Y, 1.7, 1.7)
88     px, py, maxhill = hill_climb(X, Y)
89     print px, py, maxhill
90     drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))

从这个结果来看,因为范围扩大了一点,所以效果会好一点点,当依旧是一个局部最优算法.

3.随机重新开始爬山算法呢?

   简单的描述:

       随机重新开始爬山算法是基于最陡爬山算法,其实就是加一个达到全局最优解的条件,如果满足该条件,就结束运算,反之则无限次重复运算最陡爬山算法.

  由于此题,并没有结束的特征条件,我们这里就不给予实现.

4.模拟退火算法

   简单描述:

(1)随机挑选一个单元k,并给它一个随机的位移,求出系统因此而产生的能量变化ΔEk。  (2)若ΔEk⩽0,该位移可采纳,而变化后的系统状态可作为下次变化的起点;  若ΔEk>0,位移后的状态可采纳的概率为 

式中T为温度,然后从(0,1)区间均匀分布的随机数中挑选一个数R,若R<Pk,则将变化后的状态作为下次的起点;否则,将变化前的状态作为下次的起点。  (3)转第(1)步继续执行,知道达到平衡状态为止。

代码实现为:

代码语言:javascript
复制
 1 # encoding:utf8
 2 from random import random, randint
 3 
 4 from matplotlib import pyplot as plt
 5 import numpy as np
 6 from mpl_toolkits.mplot3d import Axes3D
 7 
 8 
 9 def func(X, Y, x_move=1.7, y_move=1.7):
10     def mul(X, Y, alis=1):
11         return alis * np.exp(-(X * X + Y * Y))
12 
13     return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14 
15 
16 def show(X, Y, Z):
17     fig = plt.figure()
18     ax = Axes3D(fig)
19     plt.title("demo_hill_climbing")
20     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21     ax.set_xlabel('x label', color='r')
22     ax.set_ylabel('y label', color='g')
23     ax.set_zlabel('z label', color='b')
24     # ax.scatter(X,Y,Z,c='r') #绘点
25     plt.show()
26 
27 
28 def drawPaht(X, Y, Z, px, py, pz):
29     fig = plt.figure()
30     ax = Axes3D(fig)
31     plt.title("demo_hill_climbing")
32     ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='b' )
33     ax.set_xlabel('x label', color='r')
34     ax.set_ylabel('y label', color='g')
35     ax.set_zlabel('z label', color='b')
36     ax.plot(px, py, pz, 'r.')  # 绘点
37     plt.show()
38 
39 
40 def hill_climb(X, Y):
41     global_X = []
42     global_Y = []
43     # 初始温度
44     temperature = 105.5
45     # 温度下降的比率
46     delta = 0.98
47     # 温度精确度
48     tmin = 1e-10
49 
50     len_x = len(X)
51     len_y = len(Y)
52 
53     # 随机登山点
54     st_x = X[0][randint(0, len_x - 1)]
55     st_y = Y[randint(0, len_y - 1)][0]
56     st_z = func(st_x, st_y)
57 
58     def argmax(stx, sty, alisx, alisy):
59         cur = func(st_x, st_y)
60         next = func(alisx, alisy)
61 
62         return cur < next and True or False
63 
64     while (temperature > tmin):
65         # 随机产生一个新的邻近点
66         # 说明: 温度越高幅度邻近点跳跃的幅度越大
67         tmp_x = st_x + (random() * 2 - 1) * temperature
68         tmp_y = st_y + + (random() * 2 - 1) * temperature
69         if 4 > tmp_x >= -2 and 4 > tmp_y >= -2:
70             if argmax(st_x, st_y, tmp_x, tmp_y):
71                 st_x = tmp_x
72                 st_y = tmp_y
73             else:  # 有机会跳出局域最优解
74                 pp = 1.0 / (1.0 + np.exp(-(func(tmp_x, tmp_y) - func(st_x, st_y)) / temperature))
75                 if random() < pp:
76                     st_x = tmp_x
77                     st_y = tmp_y
78         temperature *= delta  # 以一定的速率下降
79         global_X.append(st_x)
80         global_Y.append(st_y)
81     return global_X, global_Y, func(st_x, st_y)
82 
83 
84 if __name__ == '__main__':
85     X = np.arange(-2, 4, 0.1)
86     Y = np.arange(-2, 4, 0.1)
87     X, Y = np.meshgrid(X, Y)
88     Z = func(X, Y, 1.7, 1.7)
89     px, py, maxhill = hill_climb(X, Y)
90     print px, py, maxhill
91     drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))

效果:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-09-14 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  •  简言
  •  目录
  •  正文
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档