前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >单细胞转录组3大R包之Seurat

单细胞转录组3大R包之Seurat

作者头像
生信技能树
发布2018-03-09 10:42:18
23.1K0
发布2018-03-09 10:42:18
举报
文章被收录于专栏:生信技能树

牛津大学的Rahul Satija等开发的Seurat,最早公布在Nature biotechnology, 2015,文章是; Spatial reconstruction of single-cell gene expression data , 在2017年进行了非常大的改动,所以重新在biorxiv发表了文章在 Integrated analysis of single cell transcriptomic data across conditions, technologies, and species 。 功能涵盖了scRNA-seq的QC、过滤、标准化、批次效应、PCA、tNSE亚群聚类分析、差异基因分析、亚群特异性标志物鉴定等等等。

其GitHub地址是:http://satijalab.org/seurat/

给初学者提供了一个2,700 PBMC scRNA-seq dataset from 10X genomics的数据实战指导,非常容易学会: http://satijalab.org/seurat/pbmc3k_tutorial.html 数据在: https://personal.broadinstitute.org/rahuls/seurat/seurat_files_nbt.zip

同时还提供两个公共数据的实战演练教程:

  • https://www.dropbox.com/s/4d00eyd84qscyd2/IntegratedAnalysis_Examples.zip?dl=1
  • http://bit.ly/IAexpmat

下载后如下所示:

代码语言:javascript
复制
IntegratedAnalysis_Examples
├── [ 211]  INSTALL
├── [1.4K]  README.md
├── [ 170]  data
│   ├── [ 83K]  Supplementary_Table_MarrowCellData.tsv
│   ├── [547K]  Supplementary_Table_PancreasCellData.tsv
│   └── [ 561]  regev_lab_cell_cycle_genes.txt
├── [ 170]  examples
│   ├── [2.9K]  marrow_commandList.R
│   └── [2.5K]  pancreas_commandList.R
└── [ 170]  tutorial
    ├── [8.2K]  Seurat_AlignmentTutorial.Rmd
    └── [7.6M]  Seurat_AlignmentTutorial.pdf
IntegratedAnalysis_ExpressionMatrices
├── [102M]  marrow_mars.expressionMatrix.txt
├── [ 66M]  marrow_ss2.expressionMatrix.txt
├── [330M]  pancreas_human.expressionMatrix.txt
├── [ 54M]  pancreas_mouse.expressionMatrix.txt
├── [165M]  pbmc_10X.expressionMatrix.txt
└── [101M]  pbmc_SeqWell.expressionMatrix.txt

seurat的用法

这里的测试数据是经由Illumina NextSeq 500测到的2,700 single cells 表达矩阵,下载地址;

根据表达矩阵构建seurat对象

需要准备好3个输入文件

代码语言:javascript
复制
library(Seurat)
library(dplyr)
library(Matrix)
## https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz 
## 下载整个压缩包解压即可重现整个流程
# Load the PBMC dataset
list.files("~/Downloads/filtered_gene_bc_matrices/hg19/")
代码语言:javascript
复制
## [1] "barcodes.tsv" "genes.tsv"    "matrix.mtx"
代码语言:javascript
复制
pbmc.data <- Read10X(data.dir = "~/Downloads/filtered_gene_bc_matrices/hg19/")

# Examine the memory savings between regular and sparse matrices
dense.size <- object.size(x = as.matrix(x = pbmc.data))
dense.size
代码语言:javascript
复制
## 709264728 bytes
代码语言:javascript
复制
sparse.size <- object.size(x = pbmc.data)
sparse.size
代码语言:javascript
复制
## 38715120 bytes
代码语言:javascript
复制
dense.size / sparse.size
代码语言:javascript
复制
## 18.3 bytes
代码语言:javascript
复制
# Initialize the Seurat object with the raw (non-normalized data).  Keep all
# genes expressed in >= 3 cells (~0.1% of the data). Keep all cells with at
# least 200 detected genes
pbmc <- CreateSeuratObject(raw.data = pbmc.data, min.cells = 3, min.genes = 200, 
    project = "10X_PBMC")
pbmc
代码语言:javascript
复制
## An object of class seurat in project 10X_PBMC 
##  13714 genes across 2700 samples.

进行一系列的QC步骤

代码语言:javascript
复制
mito.genes <- grep(pattern = "^MT-", x = rownames(x = pbmc@data), value = TRUE)
percent.mito <- Matrix::colSums(pbmc@raw.data[mito.genes, ]) / Matrix::colSums(pbmc@raw.data)

# AddMetaData adds columns to object@meta.data, and is a great place to stash QC stats
pbmc <- AddMetaData(object = pbmc, metadata = percent.mito, col.name = "percent.mito")
VlnPlot(object = pbmc, features.plot = c("nGene", "nUMI", "percent.mito"), nCol = 3)
代码语言:javascript
复制
# GenePlot is typically used to visualize gene-gene relationships, but can be used for anything 
# calculated by the object, i.e. columns in object@meta.data, PC scores etc.
# Since there is a rare subset of cells with an outlier level of high mitochondrial percentage
# and also low UMI content, we filter these as well
par(mfrow = c(1, 2))
GenePlot(object = pbmc, gene1 = "nUMI", gene2 = "percent.mito")
GenePlot(object = pbmc, gene1 = "nUMI", gene2 = "nGene")
代码语言:javascript
复制
# We filter out cells that have unique gene counts over 2,500 or less than 200
# Note that low.thresholds and high.thresholds are used to define a 'gate'
# -Inf and Inf should be used if you don't want a lower or upper threshold.
pbmc <- FilterCells(object = pbmc, subset.names = c("nGene", "percent.mito"), low.thresholds = c(200, -Inf), high.thresholds = c(2500, 0.05))

可以看到这里选择的QC标准是 200~2500基因范围内,以及线粒体基因表达占比小于5%的才保留。

normalization

这里默认根据细胞测序文库大小进行normalization,简单的做一个log转换即可。

代码语言:javascript
复制
 summary(pbmc@raw.data[,1])
代码语言:javascript
复制
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1764  0.0000 76.0000
代码语言:javascript
复制
pbmc <- NormalizeData(object = pbmc, normalization.method = "LogNormalize", 
    scale.factor = 10000)

summary(pbmc@data[,1])
代码语言:javascript
复制
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  0.0000  0.1171  0.0000  5.7531

rDetection of variable genes across the single cells

代码语言:javascript
复制
pbmc <- FindVariableGenes(object = pbmc, mean.function = ExpMean, dispersion.function = LogVMR, x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)
代码语言:javascript
复制
length(x = pbmc@var.genes)
代码语言:javascript
复制
## [1] 1838

Scaling the data and removing unwanted sources of variation

需要去除那些technical noise,batch effects, or even biological sources of variation (cell cycle stage)

代码语言:javascript
复制
pbmc <- ScaleData(object = pbmc, vars.to.regress = c("nUMI", "percent.mito"))
summary(pbmc@scale.data[,1])

PCA分析

代码语言:javascript
复制
pbmc <- RunPCA(object = pbmc, pc.genes = pbmc@var.genes, do.print = TRUE, pcs.print = 1:5, genes.print = 5)
代码语言:javascript
复制
## [1] "PC1"
## [1] "CST3"   "TYROBP" "FCN1"   "LST1"   "AIF1"  
## [1] ""
## [1] "PTPRCAP" "IL32"    "LTB"     "CD2"     "CTSW"   
## [1] ""
## [1] ""
## [1] "PC2"
## [1] "NKG7" "GZMB" "PRF1" "CST7" "GZMA"
## [1] ""
## [1] "CD79A"    "MS4A1"    "HLA-DQA1" "TCL1A"    "HLA-DQB1"
## [1] ""
## [1] ""
## [1] "PC3"
## [1] "PF4"   "PPBP"  "SDPR"  "SPARC" "GNG11"
## [1] ""
## [1] "CYBA"     "HLA-DPA1" "HLA-DPB1" "HLA-DRB1" "CD37"    
## [1] ""
## [1] ""
## [1] "PC4"
## [1] "IL32"   "GIMAP7" "AQP3"   "FYB"    "MAL"   
## [1] ""
## [1] "CD79A"    "HLA-DQA1" "CD79B"    "MS4A1"    "HLA-DQB1"
## [1] ""
## [1] ""
## [1] "PC5"
## [1] "FCER1A"  "LGALS2"  "MS4A6A"  "S100A8"  "CLEC10A"
## [1] ""
## [1] "FCGR3A"        "CTD-2006K23.1" "IFITM3"        "ABI3"         
## [5] "CEBPB"        
## [1] ""
## [1] ""

对PCA分析结果可以进行一系列的可视化: PrintPCA, VizPCA, PCAPlot, and PCHeatmap

代码语言:javascript
复制
# Examine and visualize PCA results a few different ways
PrintPCA(object = pbmc, pcs.print = 1:5, genes.print = 5, use.full = FALSE)
代码语言:javascript
复制
## [1] "PC1"
## [1] "CST3"   "TYROBP" "FCN1"   "LST1"   "AIF1"  
## [1] ""
## [1] "PTPRCAP" "IL32"    "LTB"     "CD2"     "CTSW"   
## [1] ""
## [1] ""
## [1] "PC2"
## [1] "NKG7" "GZMB" "PRF1" "CST7" "GZMA"
## [1] ""
## [1] "CD79A"    "MS4A1"    "HLA-DQA1" "TCL1A"    "HLA-DQB1"
## [1] ""
## [1] ""
## [1] "PC3"
## [1] "PF4"   "PPBP"  "SDPR"  "SPARC" "GNG11"
## [1] ""
## [1] "CYBA"     "HLA-DPA1" "HLA-DPB1" "HLA-DRB1" "CD37"    
## [1] ""
## [1] ""
## [1] "PC4"
## [1] "IL32"   "GIMAP7" "AQP3"   "FYB"    "MAL"   
## [1] ""
## [1] "CD79A"    "HLA-DQA1" "CD79B"    "MS4A1"    "HLA-DQB1"
## [1] ""
## [1] ""
## [1] "PC5"
## [1] "FCER1A"  "LGALS2"  "MS4A6A"  "S100A8"  "CLEC10A"
## [1] ""
## [1] "FCGR3A"        "CTD-2006K23.1" "IFITM3"        "ABI3"         
## [5] "CEBPB"        
## [1] ""
## [1] ""
代码语言:javascript
复制
VizPCA(object = pbmc, pcs.use = 1:2)
代码语言:javascript
复制
PCAPlot(object = pbmc, dim.1 = 1, dim.2 = 2)
代码语言:javascript
复制
# ProjectPCA scores each gene in the dataset (including genes not included in the PCA) based on their correlation 
# with the calculated components. Though we don't use this further here, it can be used to identify markers that 
# are strongly correlated with cellular heterogeneity, but may not have passed through variable gene selection. 
# The results of the projected PCA can be explored by setting use.full=T in the functions above
pbmc <- ProjectPCA(object = pbmc, do.print = FALSE)

最重要的就是 PCHeatmap 函数了

代码语言:javascript
复制
PCHeatmap(object = pbmc, pc.use = 1, cells.use = 500, do.balanced = TRUE, label.columns = FALSE)
代码语言:javascript
复制
PCHeatmap(object = pbmc, pc.use = 1:12, cells.use = 500, do.balanced = TRUE, label.columns = FALSE, use.full = FALSE)

找到有统计学显著性的主成分

主成分分析结束后需要确定哪些主成分所代表的基因可以进入下游分析,这里可以使用JackStraw做重抽样分析。可以用JackStrawPlot可视化看看哪些主成分可以进行下游分析。

代码语言:javascript
复制
pbmc <- JackStraw(object = pbmc, num.replicate = 100, do.print = FALSE) 
JackStrawPlot(object = pbmc, PCs = 1:12)

当然,也可以用最经典的碎石图来确定主成分。

代码语言:javascript
复制
PCElbowPlot(object = pbmc)

这个确定主成分是非常有挑战性的: - The first is more supervised, exploring PCs to determine relevant sources of heterogeneity, and could be used in conjunction with GSEA for example. - The second implements a statistical test based on a random null model, but is time-consuming for large datasets, and may not return a clear PC cutoff. - The third is a heuristic that is commonly used, and can be calculated instantly.

在本例子里面,3种方法结果差异不大,可以在PC7~10直接挑选。

Cluster the cells

代码语言:javascript
复制
# save.SNN = T saves the SNN so that the clustering algorithm can be rerun using the same graph
# but with a different resolution value (see docs for full details)
pbmc <- FindClusters(object = pbmc, reduction.type = "pca", dims.use = 1:10, resolution = 0.6, print.output = 0, save.SNN = TRUE)

A useful feature in Seurat v2.0 is the ability to recall the parameters that were used in the latest function calls for commonly used functions. For FindClusters, we provide the function PrintFindClustersParams to print a nicely formatted formatted summary of the parameters that were chosen.

代码语言:javascript
复制
PrintFindClustersParams(object = pbmc)
代码语言:javascript
复制
## Parameters used in latest FindClusters calculation run on: 2018-01-22 07:43:31
## =============================================================================
## Resolution: 0.6
## -----------------------------------------------------------------------------
## Modularity Function    Algorithm         n.start         n.iter
##      1                   1                 100             10
## -----------------------------------------------------------------------------
## Reduction used          k.param          k.scale          prune.SNN
##      pca                 30                25              0.0667
## -----------------------------------------------------------------------------
## Dims used in calculation
## =============================================================================
## 1 2 3 4 5 6 7 8 9 10
代码语言:javascript
复制
# While we do provide function-specific printing functions, the more general function to 
# print calculation parameters is PrintCalcParams(). 

Run Non-linear dimensional reduction (tSNE)

同样也是一个函数,这个结果也可以像PCA分析一下挑选合适的PC进行下游分析。

代码语言:javascript
复制
pbmc <- RunTSNE(object = pbmc, dims.use = 1:10, do.fast = TRUE)
代码语言:javascript
复制
# note that you can set do.label=T to help label individual clusters
TSNEPlot(object = pbmc)

这一步很耗时,可以保存该对象,便于重复,以及分享交流

代码语言:javascript
复制
save(pbmc, file = "pbmc3k.rData")

Finding differentially expressed genes (cluster biomarkers)

差异分析在seurat包里面被封装成了函数:FindMarkers,有一系列参数可以选择,然后又4种找差异基因的算法:

  • ROC test (“roc”)
  • t-test (“t”)
  • LRT test based on zero-inflated data (“bimod”, default)
  • LRT test based on tobit-censoring models (“tobit”)
代码语言:javascript
复制
# find all markers of cluster 1
cluster1.markers <- FindMarkers(object = pbmc, ident.1 = 1, min.pct = 0.25)
print(x = head(x = cluster1.markers, n = 5))
代码语言:javascript
复制
##                p_val avg_logFC pct.1 pct.2    p_val_adj
## S100A9  0.000000e+00  3.827593 0.996 0.216  0.00000e+00
## S100A8  0.000000e+00  3.786535 0.973 0.123  0.00000e+00
## LGALS2  0.000000e+00  2.634722 0.908 0.060  0.00000e+00
## FCN1    0.000000e+00  2.369524 0.956 0.150  0.00000e+00
## CD14   8.129864e-290  1.949317 0.663 0.029 1.11493e-285
代码语言:javascript
复制
# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(object = pbmc, ident.1 = 5, ident.2 = c(0,3), min.pct = 0.25)
print(x = head(x = cluster5.markers, n = 5))
代码语言:javascript
复制
##                p_val avg_logFC pct.1 pct.2     p_val_adj
## GZMB   3.854665e-190  3.195021 0.955 0.084 5.286288e-186
## IGFBP7 2.967797e-155  2.175917 0.542 0.010 4.070037e-151
## GNLY   7.492111e-155  3.514718 0.961 0.143 1.027468e-150
## FGFBP2 2.334109e-150  2.559484 0.852 0.085 3.200998e-146
## FCER1G 4.819154e-141  2.280724 0.839 0.100 6.608987e-137
代码语言:javascript
复制
# find markers for every cluster compared to all remaining cells, report only the positive ones
pbmc.markers <- FindAllMarkers(object = pbmc, only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25)
pbmc.markers %>% group_by(cluster) %>% top_n(2, avg_logFC)
代码语言:javascript
复制
## # A tibble: 16 x 7
## # Groups:   cluster [8]
##            p_val avg_logFC pct.1 pct.2     p_val_adj cluster     gene
##            <dbl>     <dbl> <dbl> <dbl>         <dbl>  <fctr>    <chr>
##  1 1.315805e-234  1.149058 0.924 0.483 1.804495e-230       0     LDHB
##  2 3.311687e-129  1.068122 0.662 0.202 4.541648e-125       0     IL7R
##  3  0.000000e+00  3.827593 0.996 0.216  0.000000e+00       1   S100A9
##  4  0.000000e+00  3.786535 0.973 0.123  0.000000e+00       1   S100A8
##  5  0.000000e+00  2.977399 0.936 0.042  0.000000e+00       2    CD79A
##  6 1.038405e-271  2.492236 0.624 0.022 1.424068e-267       2    TCL1A
##  7 8.029765e-207  2.158812 0.974 0.230 1.101202e-202       3     CCL5
##  8 1.118949e-181  2.113428 0.588 0.050 1.534527e-177       3     GZMK
##  9 1.066599e-173  2.275509 0.962 0.137 1.462733e-169       4   FCGR3A
## 10 1.996623e-123  2.151881 1.000 0.316 2.738169e-119       4     LST1
## 11 9.120707e-265  3.334634 0.955 0.068 1.250814e-260       5     GZMB
## 12 6.251673e-192  3.763928 0.961 0.131 8.573544e-188       5     GNLY
## 13 2.510362e-238  2.729243 0.844 0.011 3.442711e-234       6   FCER1A
## 14  7.037034e-21  1.965168 1.000 0.513  9.650588e-17       6 HLA-DPB1
## 15 2.592342e-186  4.952160 0.933 0.010 3.555138e-182       7      PF4
## 16 7.813553e-118  5.889503 1.000 0.023 1.071551e-113       7     PPBP

值得注意的是: The ROC test returns the ‘classification power’ for any individual marker (ranging from 0 - random, to 1 - perfect).

代码语言:javascript
复制
cluster1.markers <- FindMarkers(object = pbmc, ident.1 = 0, thresh.use = 0.25, test.use = "roc", only.pos = TRUE)

同时,该包提供了一系列可视化方法来检查差异分析的结果的可靠性:

  • VlnPlot (shows expression probability distributions across clusters)
  • FeaturePlot (visualizes gene expression on a tSNE or PCA plot) are our most commonly used visualizations
  • JoyPlot, CellPlot, and DotPlot
代码语言:javascript
复制
VlnPlot(object = pbmc, features.plot = c("MS4A1", "CD79A"))
代码语言:javascript
复制
# you can plot raw UMI counts as well
VlnPlot(object = pbmc, features.plot = c("NKG7", "PF4"), use.raw = TRUE, y.log = TRUE)
代码语言:javascript
复制
FeaturePlot(object = pbmc, features.plot = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", "CD8A"), cols.use = c("grey", "blue"), reduction.use = "tsne")

DoHeatmap generates an expression heatmap for given cells and genes. In this case, we are plotting the top 20 markers (or all markers if less than 20) for each cluster.

代码语言:javascript
复制
pbmc.markers %>% group_by(cluster) %>% top_n(10, avg_logFC) -> top10
# setting slim.col.label to TRUE will print just the cluster IDS instead of every cell name
DoHeatmap(object = pbmc, genes.use = top10$gene, slim.col.label = TRUE, remove.key = TRUE)

Assigning cell type identity to clusters

这个主要取决于生物学背景知识:

Cluster ID

Markers

Cell Type

0

IL7R

CD4 T cells

1

CD14, LYZ

CD14+ Monocytes

2

MS4A1

B cells

3

CD8A

CD8 T cells

4

FCGR3A, MS4A7

FCGR3A+ Monocytes

5

GNLY, NKG7

NK cells

6

FCER1A, CST3

Dendritic Cells

7

PPBP

Megakaryocytes

代码语言:javascript
复制
current.cluster.ids <- c(0, 1, 2, 3, 4, 5, 6, 7)
new.cluster.ids <- c("CD4 T cells", "CD14+ Monocytes", "B cells", "CD8 T cells", "FCGR3A+ Monocytes", "NK cells", "Dendritic cells", "Megakaryocytes")
pbmc@ident <- plyr::mapvalues(x = pbmc@ident, from = current.cluster.ids, to = new.cluster.ids)
TSNEPlot(object = pbmc, do.label = TRUE, pt.size = 0.5)

Further subdivisions within cell types

代码语言:javascript
复制
# First lets stash our identities for later
pbmc <- StashIdent(object = pbmc, save.name = "ClusterNames_0.6")

# Note that if you set save.snn=T above, you don't need to recalculate the SNN, and can simply put: 
# pbmc <- FindClusters(pbmc,resolution = 0.8)
pbmc <- FindClusters(object = pbmc, reduction.type = "pca", dims.use = 1:10, resolution = 0.8, print.output = FALSE)

# Demonstration of how to plot two tSNE plots side by side, and how to color points based on different criteria
plot1 <- TSNEPlot(object = pbmc, do.return = TRUE, no.legend = TRUE, do.label = TRUE)
plot2 <- TSNEPlot(object = pbmc, do.return = TRUE, group.by = "ClusterNames_0.6", no.legend = TRUE, do.label = TRUE)
plot_grid(plot1, plot2)
代码语言:javascript
复制
# Find discriminating markers
tcell.markers <- FindMarkers(object = pbmc, ident.1 = 0, ident.2 = 1)

# Most of the markers tend to be expressed in C1 (i.e. S100A4). However, we can see that CCR7 is upregulated in 
# C0, strongly indicating that we can differentiate memory from naive CD4 cells.
# cols.use demarcates the color palette from low to high expression
FeaturePlot(object = pbmc, features.plot = c("S100A4", "CCR7"), cols.use = c("green", "blue"))

The memory/naive split is bit weak, and we would probably benefit from looking at more cells to see if this becomes more convincing. In the meantime, we can restore our old cluster identities for downstream processing.

还有一个非常给力的用法,限于篇幅,就不介绍了,大家可以自行探索。

后面还有一个10X的单细胞实战,用的就是这个包,敬请期待。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-01-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • seurat的用法
    • 根据表达矩阵构建seurat对象
      • 进行一系列的QC步骤
        • normalization
          • rDetection of variable genes across the single cells
            • Scaling the data and removing unwanted sources of variation
              • PCA分析
                • 找到有统计学显著性的主成分
                  • Cluster the cells
                    • Run Non-linear dimensional reduction (tSNE)
                    • Finding differentially expressed genes (cluster biomarkers)
                    • Assigning cell type identity to clusters
                    • Further subdivisions within cell types
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档