前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >python︱imagehash中的四种图像哈希方式(phash/ahash/dhash/小波hash)

python︱imagehash中的四种图像哈希方式(phash/ahash/dhash/小波hash)

作者头像
悟乙己
发布2018-01-02 17:09:24
8.5K0
发布2018-01-02 17:09:24
举报
文章被收录于专栏:素质云笔记

code来源:https://github.com/JohannesBuchner/imagehash 外文原文:https://fullstackml.com/wavelet-image-hash-in-python-3504fdd282b5

可以直接pip:

代码语言:javascript
复制
pip install imagehash

1 perception hashing

感知哈希,不同于aHash,但首先它确实是离散余弦变换和频域。 主函数:def phash(image, hash_size=8, highfreq_factor=4):

  • 两个参数,一起决定了图片resize的大小,最适合的才最好,按照公式: img_size = hash_size * highfreq_factor
  • hash_size代表最终返回hash数值长度
  • highfreq_factor,代表resize的尺度

案例:

代码语言:javascript
复制
highfreq_factor = 1
hash_size = 8
img_size = hash_size * highfreq_factor

hash1 = imagehash.phash(Image.open('1_1.jpg'),hash_size=hash_size,highfreq_factor=highfreq_factor)
print(hash1)
# > 354adab5054af0b7

hash2 = imagehash.phash(Image.open('5_1.jpg'),hash_size=hash_size,highfreq_factor=highfreq_factor)
print(hash2)
# > 5b7724c8bb364551

1 - (hash1 - hash2)/len(hash1.hash)**2 # 相似性

2 average hashing

平均散列,对于每个像素输出1,如果该像素是大于或等于平均值,否则为0。 主函数:

代码语言:javascript
复制
  average_hash(image, hash_size=8)

案例:

代码语言:javascript
复制
hash_size = 6
hash1 = imagehash.average_hash(Image.open('1_1.jpg'),hash_size=hash_size)
print(hash1)
# > 354adab5054af0b7

hash2 = imagehash.average_hash(Image.open('5_1.jpg'),hash_size=hash_size)
print(hash2)
# > 5b7724c8bb364551

1 - (hash1 - hash2)/len(hash1.hash)**2 # 相似性

3 difference hashing

梯度散列,计算每个像素的差值,并与平均差异的差异进行比较。

代码语言:javascript
复制
def dhash(image, hash_size=8)

案例:

代码语言:javascript
复制
hash_size = 10
hash1 = imagehash.dhash(Image.open('5_1.jpg'),hash_size=hash_size)
print(hash1)
# > 354adab5054af0b7

hash2 = imagehash.dhash(Image.open('1_1.jpg'),hash_size=hash_size)
print(hash2)
# > 5b7724c8bb364551

1 - (hash1 - hash2)/len(hash1.hash)**2 # 相似性

4 wavelet hashing

离散小波变换(DWT)是频表示的另一种形式。流行的DCT和傅立叶变换使用余弦函数作为sin\cos的基础:sin(x),sin(2x),sin(3x)等等。与此相反,DWT使用一个单一的功能作为基础,但在不同的形式:缩放和移动。基础功能是可以改变的,这就是为什么我们可以有Haar小波,Daubechie-4小波等,这尺度效应给我们很大“时频表示”的时候,低频部分类似于原始信号。

小波散列,几天前我把它添加到库里。它的工作原理在频域中作为pHash但它使用DWT代替DCT变换。 主函数:

代码语言:javascript
复制
def whash(image, hash_size = 8, image_scale = None, mode = 'haar', remove_max_haar_ll = True)

参数:

  • mode: ‘haar’ - Haar wavelets, by default ‘db4’ - Daubechies wavelets
  • remove_max_haar_ll:是否去掉低频段位,low level (LL) frequency
  • image_scale:图像重新resize成多大,一定是2的倍数

案例:

代码语言:javascript
复制
hash_size = 8
mode = 'db4'
image_scale = 64
hash1 = imagehash.whash(Image.open('1_1.jpg'),image_scale=image_scale,hash_size=hash_size,mode = mode)
print(hash1)
# > 354adab5054af0b7

hash2 = imagehash.whash(Image.open('5_1.jpg'),image_scale=image_scale,hash_size=hash_size,mode = mode)
print(hash2)
# > 5b7724c8bb364551

1 - (hash1 - hash2)/len(hash1.hash)**2 # 相似性
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1 perception hashing
  • 2 average hashing
  • 3 difference hashing
  • 4 wavelet hashing
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档