基于密度的方法的特点是不依赖于距离,而是依赖于密度,从而克服基于距离的算法只能发现“球形”聚簇的缺点。 DBSCAN的核心思想是从某个核心点出发,不断向密度可达的区域扩张,从而得到一个包含核心点和边界点的最大化区域,区域中任意两点密度相连。
算法: DBSCAN 输入: E — 半径 MinPts — 给定点在 E 领域内成为核心对象的最小领域点数 D — 集合 输出:目标类簇集合 方法: repeat 1) 判断输入点是否为核心对象 2) 找出核心对象的 E 领域中的所有直接密度可达点 util 所有输入点都判断完毕 repeat 针对所有核心对象的 E 领域所有直接密度可达点找到最大密度相连对象集合, 中间涉及到一些密度可达对象的合并。 Util 所有核心对象的 E 领域都遍历完毕
密度:空间中任意一点的密度是以该点为圆心,以EPS为半径的圆区域内包含的点数目
边界点:空间中某一点的密度,如果小于某一点给定的阈值minpts,则称为边界点
噪声点:不属于核心点,也不属于边界点的点,也就是密度为1的点
来看两张图:
DBSCAN可以较快、较有效的聚类出来
eps的取值对聚类效果的影响很大。 .
DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, n_jobs=1)
eps:两个样本之间的最大距离,即扫描半径 min_samples :作为核心点的话邻域(即以其为圆心,eps为半径的圆,含圆上的点)中的最小样本数(包括点本身)。 其他参数: metric :度量方式,默认为欧式距离,还有metric=’precomputed’(稀疏半径邻域图) algorithm:近邻算法求解方式,有四种:‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’ leaf_size:叶的大小,在使用BallTree or cKDTree近邻算法时候会需要这个参数 n_jobs :使用CPU格式,-1代表全开
core_sample_indices_:核心样本指数。(此参数在代码中有详细的解释) labels_:数据集中每个点的集合标签给,噪声点标签为-1。 components_ :核心样本的副本
model = sklearn.cluster.DBSCAN(eps_领域大小圆半径,min_samples_领域内,点的个数的阈值) model.fit(data) 训练模型 model.fit_predict(data) 模型的预测方法 .
import numpy
import pandas
import matplotlib.pyplot as plt
#导入数据
data = pandas.read_csv("F:\\python 数据挖掘分析实战\\Data\\data (7).csv")
plt.scatter(
data['x'],
data['y']
)
eps = 0.2;
MinPts = 5;
from sklearn.metrics.pairwise import euclidean_distances
ptses = []
dist = euclidean_distances(data)
for row in dist:
#密度,空间中任意一点的密度是以该点为圆心、以 Eps 为半径的圆区域内包含的点数
density = numpy.sum(row<eps)
pts = 0;
if density>MinPts:
#核心点(Core Points)
#空间中某一点的密度,如果大于某一给定阈值MinPts,则称该为核心点
pts = 1
elif density>1 :
#边界点(Border Points)
#空间中某一点的密度,如果小于某一给定阈值MinPts,则称该为边界点
pts = 2
else:
#噪声点(Noise Points)
#数据集中不属于核心点,也不属于边界点的点,也就是密度值为1的点
pts = 0
ptses.append(pts)
#把噪声点过滤掉,因为噪声点无法聚类,它们独自一类
corePoints = data[pandas.Series(ptses)!=0]
coreDist = euclidean_distances(corePoints)
#首先,把每个点的领域都作为一类
#邻域(Neighborhood)
#空间中任意一点的邻域是以该点为圆心、以 Eps 为半径的圆区域内包含的点集合
cluster = dict();
i = 0;
for row in coreDist:
cluster[i] = numpy.where(row<eps)[0]
i = i + 1
#然后,将有交集的领域,都合并为新的领域
for i in range(len(cluster)):
for j in range(len(cluster)):
if len(set(cluster[j]) & set(cluster[i]))>0 and i!=j:
cluster[i] = list(set(cluster[i]) | set(cluster[j]))
cluster[j] = list();
#最后,找出独立(也就是没有交集)的领域,就是我们最后的聚类的结果了
result = dict();
j = 0
for i in range(len(cluster)):
if len(cluster[i])>0:
result[j] = cluster[i]
j = j + 1
#找出每个点所在领域的序号,作为他们最后聚类的结果标记
for i in range(len(result)):
for j in result[i]:
data.at[j, 'type'] = i
plt.scatter(
data['x'],
data['y'],
c=data['type']
)
# DBSCAN clustering algorithm
print(__doc__)
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
X = StandardScaler().fit_transform(X)
# Compute DBSCAN
db = DBSCAN(eps=0.1, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels))
#
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
最后的结果:
.
本节来源:机器学习笔记(九)聚类算法及实践(K-Means,DBSCAN,DPEAK,Spectral_Clustering)、聚类 - 4 - 层次聚类、密度聚类(DBSCAN算法、密度最大值聚类) 密度最大值聚类是一种简洁优美的聚类算法, 可以识别各种形状的类簇, 并且参数很容易确定。用于找聚类中心和异常值的。 用DPEAK算法找到聚类中心之后,在用DBSCAN会更好
(1)我们首先给定一个半径范围r,然后对我们所有的样本,计算它的r邻域内的样本数目记作它的局部密度记作rho (2)第二步,计算每个样本到密度比它高的点的距离的最小值记作sigma,有了这两个参数就可以进行我们下一步的筛选工作了
具体分成以下四种情况: 1 rho很小,sigma很大。这个样本周围的样本量很小,但是到比它密度大的点的距离还挺远的,这说明啥,它是个远离正常样本的异常值啊,在偏僻的小角落里搞自己的小动作啊,果断踢了它呀。 2 rho很大,sigma也很大。这个样本周围样本量很大,并且要找到比它密度还大的点要好远好远,这说明这个点是被众星环绕的啊,它就是这个簇的王,我们往往把它确定为簇中心。 3 rho很小,sigma也很小。样本周围的样本量很小,但要找到样本密度比它大的点没多远就有,说明这个点是一个处在边缘上的点,往往是一个簇的边界。 4 rho很大,sigma很小。该样本周围的样本量很大,但是密度比它还大的居然也不远,这种情况只会发生在你处在了簇中心的旁边时,很可惜,也许你是这个簇的核心成员,但你做不了这个簇的王。
好的,基于每个样本的rho和sigma,我们大概就能确定它们各自的所扮演的角色了,我们把大反派异常值从样本中剔除,然后把我们找到的rho和sigma都很大的点作为簇中心,再利用K-Means或者DBSCAN算法进行聚类就能得到相对比较好的结果。
参考来源 聚类分析(五)基于密度的聚类算法 — DBSCAN 聚类算法第三篇-密度聚类算法DBSCAN 聚类算法初探(五)DBSCAN,作者: peghoty 聚类算法第一篇-概览 sklearn.cluster.DBSCAN 【挖掘模型】:Python-DBSCAN算法