前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习常用术语: epoch batch_size iteration

机器学习常用术语: epoch batch_size iteration

作者头像
ke1th
发布2018-01-02 11:45:35
9770
发布2018-01-02 11:45:35
举报
文章被收录于专栏:漫漫深度学习路
  • batch size = the number of training examples in one forward/backward pass. The higher the batch size, the more memory space you’ll need.
  • number of iterations = number of passes, each pass using [batch size] number of examples. To be clear, one pass = one forward pass + one backward pass (we do not count the forward pass and backward pass as two different passes).

When you train your neural network for example, or evaluate it, you do the feedforward not only with one sample but with a lot of them, that’s what we call a batch. You’re gonna feed forward your NN with all your batches. Using all your batches once is 1 epoch. If you have 10 epochs it mean that you’re gonna use all your data 10 times (split in batches).

  • epoch: 所有的样本都进入NN计算一遍叫做1 epoch
  • num of iterations: 计算了多少次 batch

参考资料

https://www.quora.com/What-is-epochs-in-machine-learning http://stackoverflow.com/questions/4752626/epoch-vs-iteration-when-training-neural-networks

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 参考资料
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档