首页
学习
活动
专区
圈层
工具
发布
    • 综合排序
    • 最热优先
    • 最新优先
    时间不限
  • 来自专栏创作是最好的自我投资

    通用模型VS垂直模型

    在人工智能这个充满无限可能的领域内,通用模型和垂直模型各有千秋。就我个人而言,在二者之间的选择上,并不存在偏向某一方的倾向。我觉得应当依据实际应用场景的具体需求,来挑选最为契合的模型。 通用模型通用模型,乃是旨在应对多种任务与数据类型的庞然物级人工智能模型。 在知识覆盖的广度方面,通用模型无疑具有明显的优势。当我们对于当下所需模型所涉及的精确专业领域的界限感到模糊不清时,选择通用模型无疑是一种明智之举。垂直模型接下来谈谈垂直模型。 然而,由于垂直模型的训练内容聚焦于当前行业,其涉猎的范围更集中,数据针对性更强,所以在提供专业咨询时往往更加精准、细致,这也正是垂直模型的独特价值所在。 因此,对于通用模型或者垂直模型,更倾向于哪一方不取决于个人想法,而是取决于用户需要。

    64900编辑于 2024-12-30
  • 来自专栏小洁叫你mysql

    【AI模型】训练Al模型

    模型超越AI 目前所指的模型,是“大规模深度学习模型”的简称,指具有大量参数和复杂结构的机器学习模型,可以处理大规模的数据和复杂的问题,多应用于自然语言处理、计算机视觉、语音识别等领域。 本文将探讨模型的概念、训练技术和应用领域,以及与模型相关的挑战和未来发展方向。 模型是指具有庞大参数数量的机器学习模型。传统的机器学习模型通常只有几百或几千个参数,而模型则可能拥有数亿或数十亿个参数。 训练模型的挑战 训练模型需要应对一系列挑战,包括: 以下是与模型相关的一些代码示例: 计算资源需求: import tensorflow as tf # 指定使用GPU进行训练 with tf.device 更智能的模型压缩技术:模型压缩和加速技术将继续发展,以减小模型的计算和存储开销。 更好的计算平台支持:为了支持训练和部署模型,计算平台将继续改进,提供更强大的计算资源和工具。

    1.4K30编辑于 2023-10-10
  • 来自专栏学习

    开源模型与闭源模型

    在人工智能(AI)和机器学习(ML)的快速发展过程中,模型(Large Models)已经成为推动技术进步的重要力量。当前,业界存在两种主要的模型开发模式:开源模型和闭源模型。 一、开源模型 开源模型是指开发者将模型的代码和训练数据公开,使得任何人都可以访问、修改和使用这些资源。 二、闭源模型 闭源模型是指模型的代码和数据不对外公开,通常由商业公司开发和维护。代表性的闭源模型包括OpenAI的GPT-3和Google的BERT。 三、开源模型与闭源模型的对比 1.透明性与可控性: 开源模型的透明性更高,任何人都可以查看和验证其代码和数据,确保模型的行为符合预期。这对于学术研究和技术验证非常重要。 闭源模型通过控制代码和数据的访问,能够更好地保护用户隐私和数据安全,降低被恶意利用的风险。 五、总结 开源模型和闭源模型各有优缺点,适合不同的应用场景和需求。

    1.2K10编辑于 2024-10-09
  • 来自专栏IT从业者张某某

    模型模型的幻觉问题

    参考 模型中的涌现 OpenAI 科学家:幻觉是模型与生俱来的特性,而非缺陷 模型「幻觉」,看这一篇就够了|哈工大华为出品 模型 什么是模型 语言模型(LLM)是基于海量文本数据训练的深度学习模型 模型模型发展如下图 涌现 参考:模型中的涌现 什么是涌现?先从蚂蚁开始说起。蚂蚁是自然界中一种个体非常简单,但是群体能力非常强大的生物。 如何解决模型的「幻觉」问题? 方向一:什么是模型「幻觉」 模型出现幻觉,简而言之就是“胡说八道”。 用文中的话来讲,是指模型生成的内容与现实世界事实或用户输入不一致的现象。 OpenAI 科学家 Andrej Karpathy关于模型幻觉 在 Karpathy 看来: 从某种意义上说,语言模型的全部工作恰恰就是制造幻觉,模型就是「造梦机」。 只有模型助手存在幻觉问题。 方向二:造成大模型「幻觉」的原因 那么致使模型产生幻觉的原因都有哪些?

    1.7K11编辑于 2024-01-04
  • 来自专栏数据派THU

    原创 | 模型扫盲系列——初识模型

    为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了模型这一概念。本文将从模型的原理、训练过程、prompt和相关应用介绍等方面进行分析,帮助读者初步了解模型。 为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了模型这一概念。本文讨论的模型将以平时指向比较多的语言模型为例来进行相关介绍。 训练三步骤 初步认识了模型长什么样了,接下来一起来看看如何训练出一个模型。 除这些外还包括算法优化、隐私和数据安全以及模型可解释性等方面的研究和应用,每天还有很多大模型的应用正在不断涌现,模型在未来仍然有很大的发展潜力,国内的优秀模型代表例如百度文心模型也正在搭建全系统产业化的模型全景 模型挑战 模型也存在一些现实挑战: 1.数据安全隐患:一方面模型训练需要大量的数据支持,但很多数据涉及到机密以及个人隐私问题,如客户信息、交易数据等。

    20.9K29编辑于 2023-11-22
  • 来自专栏人工智能极简应用

    【AI模型】Transformers模型库(八):模型微调之LoraConfig

    一、引言 这里的Transformers指的是huggingface开发的模型库,为huggingface上数以万计的预训练模型提供预测、训练等服务。 你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 LoRA是一种用于微调大型语言模型的轻量级方法,它通过添加低秩矩阵到预训练模型的权重上来实现适应性调整,从而在不显著增加模型大小的情况下提升特定任务的性能。 task_type: 指定任务类型,如'CAUSAL_LM',以确保LoRA适应正确应用到模型的相应部分。 get_peft_model(model, config) print_trainable_parameters(model) 三、总结 本文简要介绍LoraConfig的配置参数情况,具体的机遇peft对模型进行微调后面单独开一页详细讲解

    84910编辑于 2024-08-13
  • 来自专栏IT从业者张某某

    语言模型-1.2-模型技术基础

    简介 1.2 模型技术基础 语言模型 预训练阶段会得到base model,本质上就是一个互联网文本模拟器,这个阶段需要上万台服务器训练几个月的时间,这个生成的模型可以认为是互联网的有损压缩。 构建一个语言模型 语言模型预训练(Pre-training) 使用与下游任务无关的大规模数据进行模型参数的初始训练 ➢ 基于Transformer解码器架构,进行下一个词预测 ➢ 数据数量、数据质量都非常关键 人类对齐(Human Alignment) ➢ 将语言模型与人类的期望、需求以及价值观对齐 ➢ 基于人类反馈的强化学习对齐方法(RLHF) 模型的研发已经成为一项系统工程 扩展定律( Scaling Law) ➢ 通过扩展参数规模、数据规模和计算算力,语言模型的能力会出现显著提升 ➢ 扩展定律在本次大模型浪潮中起到了重要作用 语言模型采用了与小型预训练语言模型相似的神经网络结构 ,从而获得更可靠的答案 涌现能力与扩展定律的关系 ➢ 涌现能力和扩展定律是两种描述规模效应的度量方法 模型核心技术 ➢ 规模扩展:扩展定律奠定了早期模型的技术路线,产生了巨大的性能提升

    38710编辑于 2025-03-15
  • 来自专栏机器学习入门

    【AI模型】LLM主流开源模型介绍

    学习目标 了解LLM主流开源模型. 掌握ChatGLM、LLaMA、Bloom等基础模型的原理 LLM主流模型类别 随着ChatGPT迅速火爆,引发了模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款模型发布及应用 目前,市面上已经开源了各种类型的语言模型,本章节我们主要介绍其中的三类: ChatGLM-6B:衍生的模型(wenda、ChatSQL等) LLaMA:衍生的模型(Alpaca、Vicuna BLOOM模型 BLOOM系列模型是由 Hugging Face公司的BigScience 团队训练的语言模型。 小结 本小节主要介绍了LLM主流的开源模型,对不同模型架构、训练目标、优缺点进行了分析和总结。

    1.1K10编辑于 2024-09-24
  • 来自专栏人工智能极简应用

    【AI模型】Transformers模型库(十二):Evaluate模型评估

    一、引言 这里的Transformers指的是huggingface开发的模型库,为huggingface上数以万计的预训练模型提供预测、训练等服务。 你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 本文重点介绍Evaluate模型评估。 二、Evaluate模型评估 2.1 概述 Transformers库中的evaluate API主要用于评估模型在特定数据集上的性能。 下面是一个使用Python和Transformers库进行模型评估的基本步骤,假设你已经有了一个预训练模型和相应的数据集处理器。 评估结果将包含各种指标,如准确率,具体指标还要取决于你的模型

    91010编辑于 2024-08-13
  • 来自专栏muller的测试分享

    MetaLlama模型

    llama 模型介绍我们介绍 LLaMA,这是一个基础语言模型的集合,参数范围从 7B 到 65B。 我们在数万亿个Token上训练我们的模型,并表明可以专门使用公开可用的数据集来训练最先进的模型,而无需诉诸专有的和无法访问的数据集。 特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B),llama2 模型介绍我们开发并发布了 Llama 2,这是一组经过预训练和微调的大型语言模型 (LLM),其参数规模从 我们经过微调的语言模型(称为 Llama 2-Chat)针对对话用例进行了优化。 //huggingface.co/meta-llama/Llama-2-7bhttps://huggingface.co/docs/transformers/model_doc/llamallama 语言模型提供的主要模型列表

    37210编辑于 2024-09-02
  • 来自专栏前行的CVer

    模型Agent

    PanelGPT💡: 💁🏼🎤 (👾💬) (🤖💭) (🤯🗯) 受到“三个臭皮匠,赛过诸葛亮”启发,设计one-shot的例子,让多个LLM同时给出答案,然后再用一个LLM打分,做决定。他们使用的prompt:3 experts are discussing the question with a panel discussion, trying to solve it step by step, and make sure the result is correct and avoid penalty:,这个prompt的效果要优于Let's think step by step:。

    27910编辑于 2024-05-15
  • 模型 RAG】

    模型 RAG(Retrieval-Augmented Generation)是指结合检索和生成技术的模型,在生成任务中引入了检索的过程。 在学术界,研究者通常会在模型 RAG 的基础上提出新的模型结构、训练方法和评估指标等方面的创新。他们会通过论文发表、学术研讨会等方式将研究成果传播给其他研究人员,推动该领域的发展。 而在工业界,企业通常会将模型 RAG 技术应用到实际的产品和应用中,解决一些实际问题。 学术界与工业界可以进行合作研究项目,共同开展模型 RAG 技术的研究与探索。学术界可以提供理论指导和算法创新,工业界可以提供实际数据和场景需求。 总之,模型 RAG 场景下的产学结合是学术界和工业界合作研究和应用模型 RAG 技术的一种方式,通过合作与交流,推动该领域的发展和应用。

    22510编辑于 2025-08-29
  • 来自专栏muller的测试分享

    mixtral模型

    简介Mixtral 是一种具有开放权重的高质量稀疏专家混合模型 (SMoE)。根据 Apache 2.0 许可。 它是最强大的开放权重模型,具有宽松的许可证,也是成本/性能权衡方面的最佳模型。特别是,它在大多数标准基准测试中匹配或优于 GPT3.5。Mixtral 的特点可以优雅地处理 32k 令牌的上下文。 请为google编写web自动化测试用例,使用pytest page object设计模式,断言使用hamcrest') debug(r)总结Mixtral 是一种具有开放权重的高质量稀疏专家混合模型

    18710编辑于 2024-10-16
  • 来自专栏数据猿

    模型到底能有多“”?

    那我们沿着这条道路,进一步把神经网络规模做大,比如做到1万亿参数、10万亿参数、100万亿参数,会不会在某个节点实现第二次智能涌现,把现在模型的能力再上一个台阶,甚至实现AGI,实现模型神经网络的意识觉醒呢 量变引起质变,模型的“” 深度学习的历史可以追溯到上世纪50年代,但真正的爆发是在过去的十年里,特别是随着计算能力的提升和数据量的增加。 模型到底可以做多大? 我们不禁要问这样一个问题:模型到底可以做多大?有哪些限制了模型的规模? 综上所述,模型的发展面临着多方面的限制和挑战。 只有这样,我们才能继续推进模型的发展,同时确保这一技术的负责任和可持续使用。

    42410编辑于 2024-02-23
  • 来自专栏人工智能极简应用

    【AI模型】Transformers模型库(二):AutoModelForCausalLM

    一、引言 这里的Transformers指的是huggingface开发的模型库,为huggingface上数以万计的预训练模型提供预测、训练等服务。 2.2 主要功能 这个类是基于`AutoModel`的,它能够根据指定的模型名称或路径自动加载相应的模型架构。 这里使用了Auto自动模型,transformers包括管道pipeline、自动模型auto以及具体模型三种模型实例化方法,如果同时有配套的分词工具(Tokenizer),需要使用同名调度。 管道(Pipline)方式:高度集成的使用方式,几行代码就可以实现一个NLP任务 自动模型(AutoModel)方式:自动载入并使用BERT等模型 具体模型方式:在使用时需要明确具体的模型,并按照特定参数进行调试 同时,列举了管道模型、自动模型、具体模型等三种transformers预训练模型实例化方法。期待大家三连。

    2.7K11编辑于 2024-08-13
  • 来自专栏人工智能极简应用

    【AI模型】Transformers模型库(四):AutoTokenizer

    一、引言 这里的Transformers指的是huggingface开发的模型库,为huggingface上数以万计的预训练模型提供预测、训练等服务。 这意味着,当你知道模型的名称时,你可以使用AutoTokenizer自动获取与该模型匹配的分词器,而不需要了解分词器的具体实现细节。 2.2 主要特点 模型兼容性:通过模型名称自动匹配合适的分词器,支持BERT、RoBERTa、Albert、DistilBERT、T5等众多模型。 灵活性:对于新发布的模型,只要其分词器在Hugging Face模型库中可用,AutoTokenizer.from_pretrained就能加载。 这意味着,当知道模型的名称时,可以使用AutoTokenizer自动获取与该模型匹配的分词器。

    1.5K10编辑于 2024-08-13
  • 模型模型备案的限定领域有哪些?

    模型是一种机器学习中的模型,它通常用于处理模型的数据集和复杂的任务。模型因其出色的性能和表现备受关注。接下来就讨论以下模型的一些限定领域都有哪些。 一、什么是限定领域模型的限定领域是指通过通用模型的基础上将特定领域或行业中经过训练和优化的语言模型,与通用模型相比垂直领域模型更注重于某个特定领域的知识和技能,表现更精准、专业、具有更高的领域专业性和使用性 二、通用模型的特点与缺点通用模型旨在覆盖广泛的任务和领域,具备较强的泛化能力。通常基于大量跨领域数据训练,能够处理语言理解、生成、推理等多种任务。 通用模型在企业级场景无法直接使用,比如以下几点:●缺乏企业知识●数据安全隐患●知识更新不及时●模型的训练和部署普通企业无法承担●无法保证模型的所有权三、限定模型的特点与优势垂类模型针对特别行业或场景优化 财务报告分析、监管政策解读教育与科研●个性化学习:自适应教育内容推荐、习题解答、语言学习辅助●学术研究:文献综述生成、实验设计建议、论文写作辅助●科学计算:物理、化学、生物等领域的复杂模拟与数据分析五、申请限定模型需要哪些前提条件医疗行业需要当地卫健委批准的红头文件教育行业需要当地教育局批注的红头文件以此内推

    28710编辑于 2025-08-26
  • 来自专栏AI大模型备案

    模型备案焦虑?模型“躺赢”攻略在此!

    ​随着生成式人工智能服务管理暂行办法的深入实施,“备案”成了AI模型领域绕不开的热词。不少开发者和企业感到压力山大,仿佛一夜之间,前路充满了不确定性与合规挑战。但真相果真如此吗? 或许,备案非但不是枷锁,反而是模型应用“躺赢”新时代的入场券。一、拨开迷雾:备案非“紧箍咒”,实为“指南针”很多人一听到“备案”,第一反应是监管、是限制,是又多了一道繁琐的流程。 试想,在一个缺乏规则的市场,各种良莠不齐的模型应用野蛮生长,可能导致数据泄露、算法歧视、甚至传播有害信息等问题。最终受损的,将是整个行业的声誉和用户信任。 这不仅能提升备案效率,更能从根本上降低运营风险,提升模型质量。3. 场景聚焦:深耕垂直领域,做“专而精”的专家模型并非万能。与其追求大而全,不如在备案指引的合规框架下,深耕特定垂直领域。 模型备案的常态化,正是一场行业的“退潮”过程。它洗去的是浮躁和泡沫,留下的将是真正致力于技术突破和价值创造的参与者。

    11810编辑于 2025-11-15
  • 来自专栏人工智能极简应用

    【AI模型】Transformers模型库(一):Tokenizer

    一、引言 这里的Transformers指的是huggingface开发的模型库,为huggingface上数以万计的预训练模型提供预测、训练等服务。 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。 你可以直接使用一个框架训练你的模型然后用另一个加载和推理。 本文重点介绍Tokenizer类。 **编码**:将tokens转换为数字ID,这些ID是模型的输入。每个token在词汇表中有一个唯一的ID。 4.

    1.5K12编辑于 2024-08-13
  • 模型评测体系介绍及中文模型表现

    现在的主流方式是使用基准测试(Benchmark)来对模型的能力进行全面量化的评估。 基准测试能验证模型效果,促进模型能力的持续提升,指导厂家的选型、推广大模型的行业应用,提升模型的安全合规性。 关于模型评测,国家也发布了标准GB/T45288.2—2025 人工智能 模型第2部分:评测指标与方法,读者可以参考。 另外,中文模型谁家最强呢? 参考文档: 1.Evaluating Large Language Models: A Comprehensive Survey(发送“模型测试”可得) 2.中国信通院《模型基准测试体系研究报告2024 》(发送“模型测试”可得) 3.SuperCLUE《中文模型基准测评2025年3月报告》(发送“SuperCLUE”可得)

    2.1K20编辑于 2025-05-30
领券