课程介绍
近几年深度学习技术在学术界和工业界都得到了广泛的应用和传播。深度学习的传播不仅是由于算法的进步,更是因为深度学习技术在各行各业都取得了非常好的应用效果。
深度学习作为一门理论和实践相结合的学科,在新的算法理论不断涌现的同时,各种深度学习框架也不断出现在人们视野。比如Torch,MxNet,theano,Caffe等等。Google在2015年11月9日宣布开源自己的第二代机器学习系统Tensorflow。深度学习是未来新产品和新技术的一个关键部分。在这个领域的研究是全球性的,并且发展很快,却缺少一个标准化的工具。Google希望把Tensorflow做成深度学习行业的标准。
Tensorflow支持python和c++语言,支持CNN、RNN和LSTM等算法,可以被用于语音识别或图像处理等多项深度学习领域。它可以在一个或多个CPU或GPU中运行。它可以运行在嵌入式系统(如手机,平板电脑)中,PC中以及分布式系统中。它是目前全世界最火爆的深度学习平台(没有之一)。
课程内容基本上是以代码编程为主,也会有少量的深度学习理论内容。课程会从Tensorflow最基础的图(graphs),会话(session),张量(tensor),变量(Variable)等一些最基础的知识开始讲起,逐步讲到Tensorflow的基础使用,以及在Tensorflow中CNN和LSTM的使用。在课程的后面会带着大家做几个实际的项目,比如训练自己的模型去进行图像识别,使用Tensorflow进行验证码的识别,以及Tensorflow在NLP中的使用。
课程目标
通过课程学习,掌握Tensorflow深度学习开发框架的基本使用,以及通过实际深度学习编程案例提高编程能力。
适用人群
深度学习,人工智能爱好者
课程目录
第一课 Tensorflow简介,Anaconda安装,Tensorflow的CPU版本安装。
第二课 Tensorflow的基础使用,包括对图(graphs),会话(session),张量(tensor),变量(Variable)的一些解释和操作。
第三课 Tensorflow线性回归以及分类的简单使用,softmax介绍。
第四课 交叉熵(cross-entropy),过拟合,dropout以及Tensorflow中各种优化器的介绍。
第五课 使用Tensorboard进行结构可视化,以及网络运算过程可视化。
第六课 卷积神经网络CNN的讲解,以及用CNN解决MNIST分类问题。
第七课 递归神经网络LSTM的讲解,以及LSTM网络的使用。
第八课 保存和载入模型,使用Google的图像识别网络inception-v3进行图像识别。
第九课 Tensorflow的GPU版本安装。设计自己的网络模型,并训练自己的网络模型进行图像识别。
第十课 多任务学习以及验证码识别。
第十一课 word2vec讲解和使用,cnn解决文本分类问题。
第十二课 语音处理以及使用LSTM构建语音分类模型。
领取专属 10元无门槛券
私享最新 技术干货