首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

拓展阅读:AlphaGo是如何学会下围棋的?

第一缕星火

人工智能领域取得了一项重要突破----一在围棋项目中,一个由谷歌研究团队开发的计算机系统AlphaGo击败了欧洲的顶尖职业棋手。在此之前,这个关于战略性和直观判断的古老东方竞技游戏,已经困扰了人工智能专家们数十年之久。

AlphaGo系统

DeepMind计划自称为「人工智能界的阿波罗」,于2014年被谷歌收购。在10月伦敦举办的这场人机比赛上,DeepMind的系统----一个更广为人知的名字「AlphaGo」,在与欧洲围棋冠军樊麾的对弈中发挥出色,五局比赛未尝一败。比赛结果在《自然》杂志的编辑和英国围棋联盟代表的监督和见证下产生,事后《自然》杂志的编辑评价:这是我职业生涯中最激动人心的时刻之一,无论是作为一名学者还是作为一名编辑。

通过输入收集到的大量人类棋谱,DeepMind的研究人员开始训练这个系统自己下围棋。但这仅仅是第一步。从理论上讲,这样的训练只会产生一个和顶尖人类一样优秀的系统(但这不能保证对人类的绝对优势)。为了打败最顶尖的人类,研究人员让这个系统进行自我间对弈。这使得系统自身又可以产生一系列新的棋谱,基于新棋谱训练出的新人工智能,有着超越人类大师的能力。

自我增强

深度学习依赖于所谓的神经网络----一种硬件和软件网络,类似于人脑中的神经元。这些神经网络并非依靠暴力计算或手动制定的规则来运作,他们分析大量数据以「学习」特定的任务。将足够多的袋熊照片送入神经网络,它可以学习识别袋熊;给它「投喂」足够多的口语,它可以学会辨认你说的话;「投喂」足够的围棋走法,它就可以学会下围棋。

在DeepMind,研究人员希望神经网络可以通过「看」盘中的选点来掌握围棋,就像人类在下棋时一样。这项技术反馈良好,通过将深度学习与「蒙特卡洛树」方法结合,Facebook旗下的系统已经击败了一些人类玩家。

在这之后,研究员们将研究结果输入第二个神经网络,收集它通过自我对弈给出的建议棋着,神经系统便可以预见这之后的每一步的变化。这类似于较旧的系统(如深蓝)在国际象棋领域所表现出的一样,只不过AlphaGo系统在分析更多数据时,会不断进行自我学习并最终做到这一点,而非通过暴力的手段探索棋盘上所有的可能性。这样一来,AlphaGo不仅学会了击败现有AI程序,也能学会击败顶尖的人类棋手。

风雨欲来

在非公开场合打败了欧洲的围棋大师之后,哈萨比斯和他的团队旨在在公开论坛上击败世界顶尖棋手之一的李世石。

根据库伦等人的说法,战胜世界冠军将比战胜欧洲冠军樊麾更具挑战性。但是这次,库伦将赌注押在了一直以来的竞争对手----AlphaGo上。在过去的十年中,他一直尝试开发出能够击败世界最顶尖棋手的AI系统,现在,他相信这个系统就在眼前。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20211109A03TII00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券