消息在真正发往 Kafka 之前,有可能需要经历拦截器、序列化器和分区器等一系列的作用,前面已经做了一系列分析。那么在此之后又会发生什么呢?先看一下生产者客户端的整体架构,如下图所示。
整个生产者客户端由两个线程协调运行,这两个线程分别为主线程和发送线程。在主线程中由KafkaProducer创建消息,然后通过可能的拦截器、序列化器和分区器的作用之后缓存到消息收集器(RecordAccumulator,也称为消息累加器)中。发送线程负责从消息收集器中获取消息并将其发送到 Kafka 中。
主线程中发送过来的消息都会被追加到消息收集器的某个双端队列(Deque)中,在其的内部为每个分区都维护了一个双端队列,队列中的内容就是ProducerBatch,即 Deque。消息写入缓存时,追加到双端队列的尾部;Sender 读取消息时,从双端队列的头部读取。注意 ProducerBatch 不是 ProducerRecord,ProducerBatch 中可以包含一至多个 ProducerRecord。
通俗地说,ProducerRecord 是生产者中创建的消息,而 ProducerBatch 是指一个消息批次,ProducerRecord 会被包含在 ProducerBatch 中,这样可以使字节的使用更加紧凑。与此同时,将较小的 ProducerRecord 拼凑成一个较大的 ProducerBatch,也可以减少网络请求的次数以提升整体的吞吐量。
如果生产者客户端需要向很多分区发送消息,则可以将 buffer.memory 参数适当调大以增加整体的吞吐量。
消息在网络上都是以字节的形式传输的,在发送之前需要创建一块内存区域来保存对应的消息。在 Kafka 生产者客户端中,通过 java.io.ByteBuffer实现消息内存的创建和释放。不过频繁的创建和释放是比较耗费资源的,在 消息收集器的内部还有一个 BufferPool,它主要用来实现 ByteBuffer 的复用,以实现缓存的高效利用。不过 BufferPool 只针对特定大小的 ByteBuffer 进行管理,而其他大小的 ByteBuffer 不会缓存进 BufferPool 中,这个特定的大小由 batch.size 参数来指定,默认值为16384B,即16KB。我们可以适当地调大 batch.size 参数以便多缓存一些消息。
ProducerBatch 的大小和 batch.size 参数也有着密切的关系。当一条消息流入消息收集器时,会先寻找与消息分区所对应的双端队列(如果没有则新建),再从这个双端队列的尾部获取一个 ProducerBatch(如果没有则新建),查看 ProducerBatch 中是否还可以写入这个 ProducerRecord,如果可以则写入,如果不可以则需要创建一个新的 ProducerBatch。
在新建 ProducerBatch 时评估这条消息的大小是否超过 batch.size 参数的大小,如果不超过,那么就以 batch.size 参数的大小来创建 ProducerBatch,这样在使用完这段内存区域之后,可以通过 BufferPool 的管理来进行复用;如果超过,那么就以评估的大小来创建 ProducerBatch,这段内存区域不会被复用。
Sender 从 RecordAccumulator 中获取缓存的消息之后,会进一步将原本> 的保存形式转变成 的形式,其中 Node 表示 Kafka 集群的 broker 节点。
对于网络连接来说,生产者客户端是与具体的 broker 节点建立的连接,也就是向具体的 broker 节点发送消息,而并不关心消息属于哪一个分区;而对于 KafkaProducer 的应用逻辑而言,我们只关注向哪个分区中发送哪些消息,所以在这里需要做一个应用逻辑层面到网络I/O层面的转换。
在转换成 的形式之后,Sender 还会进一步封装成 的形式,这样就可以将 Request 请求发往各个 Node 了,这里的 Request 是指 Kafka 的各种协议请求,对于消息发送而言就是指具体的 ProduceReques
请求在从 Sender 线程发往 Kafka 之前还会保存到InFlightRequests中,保存对象的具体形式为 Map,它的主要作用是缓存了已经发出去但还没有收到响应的请求(NodeId 是一个 String 类型,表示节点的 id 编号)。
- END -
领取专属 10元无门槛券
私享最新 技术干货