首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据分析终极难题:数据分析怎么做才能驱动业务

今天来说说数据驱动业务这个话题,但凡企业搞信息化建设、数字化转型的大多都是扛着“数据驱动业务”的大旗往前冲的,渴望通过数据分析来驱动业务增长,但是在实际工作中,大部分的数据分析项目都是带着“数据驱动业务”的美好愿景出发,但最后都沦落成了业务的附属品,变成业务的提数机。

数据分析到底应该怎么做才能驱动业务?

在回答这个问题之前,我先带大家认识一下数据分析师的工作。

数据分析师的日常工作大体可以分为两类,一类是数据支持,一类是数据驱动

初级数据分析师的工作都是在花大量的时间做数据支持工作,负责日常报表搭建、开发、上线,承接临时需求,根据业务需求制作一些描述性的分析报告,完成埋点需求的拆解和流量分析等。

而数据驱动类的工作,则是通过数据分析来发现业务问题,从而优化产品路径或运营策略,或者通过数据分析支持领导决策。

大部分数据分析师苦恼的问题是,数据支持类工作占据大部分甚至全部的工作时间,难以获得成就感,工作价值也难得到领导和业务认可,清楚的知道数据分析要发挥更大价值,必须要落地于业务,但是说到数据驱动业务,又不知道从哪下手。

总结一下,数据分析工作难以驱动业务的原因,有下面三点,下文将针对这三个问题给出解决建议。

第一步:提高数据支持类工作效率

数据支持类繁杂,但又不得不做,基础数据维护是业务正常运转和项目推进的基础,既然无法避免,我们只能通过效率提升来缩短时间

1、规范需求流程

面对业务繁杂、多样的需求,我们可以规范化需求提出、需求评估与承接、需求开发与数据结果校验等的流程,一方面避免因为需求评估、排期和业务扯皮,另一方面也培养了数据分析师的工作习惯和分析问题的思维

2、管理业务预期:

对业务需求做好优先级排期,除非紧急性需求要以最高优先级最短时间内交付结果,其他的需求按照正常的节奏产出。

做好需求排期和需求交付的公开透明公示,避免业务方因为不了解而猜忌是数据同学敷衍拖延,需求管理的本质是承诺管理,自己承诺出去在什么时间交付什么结果,自己就得尽全力做到,除非有不可抗力。

准确、守时、稳定的数据支持,是数据人和数据部门的“立根之本”,也是建立“数据权威”、与合作方建立信任关系的基础。

第二步:搭建基础数据设施,常规问题工程化

在业务的数据支持需求中,有一部分需求是可以通用的方法解决的,比如日常的报表查询、制作等,这些问题可以直接做成通用报表,让业务自行查看

一些中大型企业会通过报表平台的建设来完成一些固定报表模板的开发和管理,比如通过报表工具直接与数据库对接,并将数据库中的数据按照字段实时更新,这样就解决来取数的问题,做好的报表模板可以实时更新数据,并且可以集成到OA系统、ERP系统之中,这样就避免了很多重复的数据支持工作

剩下的问题再根据重要性和紧急程度逐个攻破,相信这时数据分析师应该有时间着手其他问题了。

第三步:理解业务,掌握主动性

在我的理解里,数据驱动就是:通过数据分析理解业务,验证思路,发现利用率不足的资源并对之进行重新整合,从而做出ROI划算的增量价值。

在我们做了很多数据支持工作之后,你会发现数据只是充当了一个辅助工具,帮助业务验证某一个已有的想法,而不是帮助业务解决问题。数据驱动应该是全面、系统地从数据角度发现和解决业务问题,是一个数据建模的完整过程,而不是仅仅让数据在辅助验证某一个想法。

所以数据分析师来说,对业务的深刻理解和判断是数据驱动的上限,掌握再多数据分析模型、思维和方法,也只是让你不断的逼近这个上限。

那如何快速理解业务?没有捷径,最关键的就是:多问。

大部分的数据分析师都是被动接受需求,根据业务提供的逻辑完成需求。但业务理解数据能力往往是不如我们的,所以就需要数据分析师掌握主动性,多去和对接的业务方了解对方要做什么,进而盘一盘我能为他要做的事情提供点什么。

第四步:搞定“人”

数据分析师搞定了自身能力,剩下最大的阻碍的就是搞定“人”:怎么让业务部门、集团领导能够心甘情愿的使用数据分析,参与数据分析,从而看到数据分析的价值。

在这个问题上,我有深刻的体会,在我刚开始组建数据团队的时候,非常渴望和业务合作一些项目,搞点事情来让领导看到我们团队的价值,我第一个想到是找业务部门的领导描绘我蓝图,但是被一口拒绝了。

后来经过多次的沟通与尝试,终于达成一致,展开了项目,这里我总结一些经验让大家参考:

1、找准关键业务部门,主动切入。用句不恰当的俗语“擒贼先擒王” ,要想撬动业务对数据分析价值的认可,先要从核心业务下手,核心业务在公司的关注度高,如果能做出价值,必然在其他业务部门推动时会更轻松

2、从小入手,先让业务尝到甜头。在和业务配合的时候,上来描绘伟大蓝图,要大修大改,业务很难信任配合,最好的办法就是先帮助业务解决问题,让业务尝到甜头,比如比如业务部门每天需要整理大量的数据,用人工的手段来处理往往效率低下,当你主动提出用工具的方法帮助业务部门解决问题后,就获取了业务部门的信任,后续再推自己的分析模型和想法就顺利多了

3、搞定老板。比搞定业务更快办法,就是直接搞定老板,让老板认可数据分析价值,从而推动数据分析在各个业务部门的应用。领导和高层的核心工作是企业管理,我们的目的是能让数据成为企业管理的工具之一,帮助领导更快、更全面地掌控业务情况。比如一些数据大屏、移动端报表等数据产品建设。

转载自网络 不用于商业宣传 版权归原作者所有,侵权删。

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20200918A09M4O00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券