首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

面试常考算法题之 Top K 问题

大家好,这里是《齐姐聊算法》系列之 Top K 问题。

Top K 问题是面试中非常常考的算法题。

Leetcode 上这两题大同小异,这里以第一题为例。

题意:

给一组词,统计出现频率最高的 k 个。

比如说 “I love leetcode, I love coding” 中频率最高的 2 个就是 I 和 love 了。

有同学觉得这题特别简单,但其实这题只是母题,它可以升级到系统设计层面来问:

在某电商网站上,过去的一小时内卖出的最多的 k 种货物。

我们先看算法层面:

思路:

统计下所有词的频率,然后按频率排序取最高的前 k 个呗。

细节:

用 HashMap 存放单词的频率,用 minHeap/maxHeap 来取前 k 个。

实现:

  1. 建一个 HashMap <key = 单词,value = 出现频率>,遍历整个数组,相应的把这个单词的出现次数 + 1.

这一步时间复杂度是 O(n).

  1. 用 size = k 的 minHeap 来存放结果,定义好题目中规定的比较顺序

a. 首先按照出现的频率排序;

b. 频率相同时,按字母顺序。

  1. 遍历这个 map,如果

a. minHeap 里面的单词数还不到 k 个的时候就加进去;

b. 或者遇到更高频的单词就把它替换掉。

时空复杂度分析:

第一步是 O(n),第三步是 nlog(k),所以加在一起时间复杂度是 O(nlogk).

用了一个额外的 heap 和 map,空间复杂度是 O(n).

代码:

代码语言:javascript
复制

class Solution {
    public List<String> topKFrequent(String[] words, int k) {
        // Step 1
        Map<String, Integer> map = new HashMap<>();
        for (String word : words) {
            Integer count = map.getOrDefault(word, 0);
            count++;
            map.put(word, count);
        }
        
        // Step 2
        PriorityQueue<Map.Entry<String, Integer>> minHeap = new PriorityQueue<>(k+1, new Comparator<Map.Entry<String, Integer>>() {
            @Override
            public int compare(Map.Entry<String, Integer> e1, Map.Entry<String, Integer> e2) {
                if(e1.getValue() == e2.getValue()) {
                    return e2.getKey().compareTo(e1.getKey());
                }
                return e1.getValue().compareTo(e2.getValue());
            }
        });
        
        // Step 3
        List<String> res = new ArrayList<>();
        for(Map.Entry<String, Integer> entry : map.entrySet()) {
            minHeap.offer(entry);
            if(minHeap.size() > k) {
                minHeap.poll();
            }
        }
        while(!minHeap.isEmpty()) {
            res.add(minHeap.poll().getKey());
        }
        Collections.reverse(res);
        return res;
    }
}

如果你喜欢这篇文章,记得给我点赞留言哦~你们的支持和认可,就是我创作的最大动力,我们下篇文章见!

  • 发表于:
  • 本文为 InfoQ 中文站特供稿件
  • 首发地址https://www.infoq.cn/article/34bafa25feb651f9bf05e86f0
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券