人工智能和它所借助的机器学习方法本质上是以数理模型为核心工具,结合控制论、认知心理学等其它学科的研究成果,最终由计算机系统模拟人类的感知、推理、学习、决策等功能。理解常用的机器学习算法,有助于我们澄清对人工智能的种种误解和偏见,帮助我们更清晰地认识人工智能的长处和局限,从而引导我们更合理、有效地将人工智能运用于投资领域。
机器学习的对象是某种客观存在的规律。这种规律可以非常浅显,也可以相当复杂,有的规律甚至连人类自己都无法完美诠释,如智能投顾学习的是资本市场中投资决策和收益之间的规律。
机器学习往往遵循一些基本的流程,主要步骤包括:数据获取、特征提取、数据转换、模型训练、模型选择和模型预测。数据获取可以通过数据库以及网络爬虫技术,途径日趋多元化。特征提取基于人的经验和探索,优质的特征能够起到事半功倍的效果。数据转换包括缺失值填充,标准化和降维。机器学习模型可分为监督学习,无监督学习和强化学习。模型选择通常借助交互验证和一系列评价指标。
(1)监督学习。监督学习的主要目的是使用有类标的训练数据构建模型,我们可以使用经训练得到的模型对未来数据进行预测。术语监督是指训练数据集中的每个样本均有一个已知的输出项。如利用分类对类标进行预测、使用回归预测连续输出值。
(2)无监督学习。在无监督学习中,将处理无类标数据或者总体分布趋势不明朗的数据,通过无监督学习,我们可以在没有已知输出变量和反馈函数指导的情况下提取有效信息来探索数据的整体结构。如通过聚类发现数据的子群,数据压缩中的降维。
(3)强化学习。强化学习的目标是构建一个系统,在与环境交互的过程中提高系统的性能。环境的当前状态信息中通常包含一个反馈信号,我们可以将强化学习视为与监督学习相关的一个领域,然而,在强化学习中,这个反馈值不是一个确定的类标或者连续类型的值,而是一个通过反馈函数产生的对当前系统行为的评价。通过与环境的交互,系统可以通过强化学习来得到一系列行为,通过探索性的试错或者借助精心设计的激励系统使得正向反馈最大化。一个常用的强化学习例子就是象棋对弈的游戏,在此,系统根据棋盘上的当前局态(环境)决定落子的位置,而游戏结束时胜负的判定可以作为激励信号。AlphaGo就是强化学习的成功应用。
领取专属 10元无门槛券
私享最新 技术干货