数据治理真的很重要?
智能是基于数据的,而数据又是基于大量人工与工程努力的,所以人工智能还有相当一部分「人工」。数据收集需要人工确定数据源,或者手动写爬虫;数据处理则需要观察数据,并手动写整个清洗过程;数据标注则要根据具体业务,看看怎样给数据打标签才好。
这些过程都会耗费大量精力,有时候如果处理路径不明确,甚至会导致重复或冗余的人力工作。因此事先确定一个具体的处理流程,明确数据该怎样治理、算力该怎样分配、模型又该如何部署,那么整个开发过程能减少很多人力成本与工程负担。
数据治理的本质是对一个机构(企业或政府部门)的数据从收集融合到分析管理和利用进行评估、指导和监督的过程,通过提供数据服务创造价值。数据治理可对数据战略资产进行管理,通过从收集汇聚到处理应用的一套治理机制,提高数据质量,实现数据共享和价值最大化。
既然那么重要,就需要一套框架,就像 DL模型最开始都是手动写,数据治理从来都不是一次性的程序,每个组织必须采取许多小的、可实现的、可衡量的步骤来实现长期目标。
因此,如果我们想降低数据治理的成本,最优地调配数据、模型及算力,那么就需要一个成熟的框架。如下我们重点介绍睿治数据治理管理平台如何解决数据问题的。
睿治数据治理平台是北京亿信华辰软件有限责任公司完全自主研发的一站式综合数据治理整体解决方案,是一款面向全用户角色的、智能的、敏捷的数据全生命周期管理应用平台。睿治平台摆脱了传统的一个问题一个工具的局限性,实现了数据治理场景全覆盖,九大核心模块:元数据、数据标准、数据质量、主数据、数据资产、数据安全、数据交换、数据处理、数据生命周期等,所有模块可自由组合,并支持本地或云上使用,全面满足客户各类治理需求。
亿信睿治作为国内少有的覆盖数据全生命周期的数据治理平台,全界面操作,“零”表达式治理,极高的易用性,可高效便捷完成数据从创建到消亡的全过程的监控和治理。一站式数据统一管理,保证了企业的业务数据在采集、汇总、转换、存储、应用整个过程中的完整性、准确性、一致性和时效性,从而帮助客户建立起符合自身特征的数据架构和数据治理体系。
亿信睿治平台具备极强的通用性,各模块功能可直接在各行业实施治理,解决常见数据问题。目前已深入服务了金融、制造、地产、电力、政务、卫生等多个行业,并正在高速拓展中。
领取专属 10元无门槛券
私享最新 技术干货