自主导航是移动机器人自动运行的一种关键技术,目前最主流的导航技术是SLAM的方式,中文意思是”即时定位与地图构建“,其原理是通过传感器对周围环境进行扫描,然后构建一个和真实环境一致的地图,同时对机器人位置进行定位,并规划一条正确的路径,最终引导机器人安全到达指定的目的地。
目前,市面上大部分的移动机器人厂商都采用SLAM这种导航方式,相关技术和部件产品也已经成熟。SLAM的方式摆了此前AGV对外部环境的依赖,例如必须要安装导轨、磁条等辅助设备,这种方式约束了机器人的活动范围,也不利于生产线的临时调整。
SLAM的方式主要有两种,一种是基于激光LiDAR传感器的方式,激光LiDAR传感器快速扫描周转环境,然后生产地图进行导航。另一种是视觉导航,利用摄像头,对周边的图像进行采集,利用算法生成地图和运行路径。目前,两种方式各有优劣,也有厂家采用多种传感器的方式,实现更高级标准的导航。
视觉导航Visual SLAM
Visual SLAM即(vSLAM)是一种基于计算机视觉的技术,主要用于室内定位导航。原理是通过视觉摄像机拍摄周围的图像,然后计算出周围环境的位置和方向,也就是对未知环境进行地图构建,然后就可以帮助移动机器人导航。
视觉导航的优点是:摄像头相对比较便宜,不需要承担大量的成本。此外,通过图像可以分辨出周边物体的纹理,从而识别出人、动物或者其他物体对象。
不过,视觉在运算的过程需要大量的硬件资源,图像占的储存空间大,运算起来比较复杂,开发难度也比较大。此外,视觉传感器容易受到光线的影响而产错误的影像,例如在较暗的环境下不容易识别环境。不过从成本来看,视觉的方式相对激光雷达的要低。
激光导航LiDAR SLAM
LiDAR SLAM的方式是通过多个激光传感收发器照亮物体,从而测量到物体的距离,例如墙壁或椅子等。每个收发器快速发射脉冲光,并测量反射的脉冲以确定障碍的位置和距离。
光的传播速度很快,所以需要高性能的激光传感器才能成功测出目标的精确距离,因此,LiDAR成为一种快速而准确的方法。不过,如果使用2D LiDAR时,可能因为物体遮挡而信息丢失。虽然3D激光传感器能够解决这些问题,但成本十分昂贵。
总的来说,LiDAR更快,更准确,但成本也更高。而vSLAM更具成本效益,可以使用价格便宜的摄像头,并具有3D地图的潜力,但运行速度比激光要慢,精确上也不及激光。
最后
无论视觉SLAM还是LiDAR SLAM,用户都需要为SLAM系统配置可靠的运算平台,以实现最佳性能。未来基于多传感器的方式将会更适应于移动机器人,例如加上红外、超声等传感器技术,可以进一步确保机器人在不同环境下能准确测量和计算出障碍物的距离。
领取专属 10元无门槛券
私享最新 技术干货