首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习(三)——k-近邻算法基础

机器学习(三)

——k-近邻算法基础

(原创内容,转载请注明来源,谢谢)

一、概述

k近邻算法(kNN),是监督学习的一种,主要用于分类,通过测量不同特征值之间的举例进行分类。

优点:精度高、对异常值不敏感、无数据输入假定。

缺点:计算复杂度高、空间复杂度高。

使用数据范围:数值型和标称型。

二、工作原理

1、原理

存在一个训练样本集,其中每个数据都存在标签,即可以知道数据的每个特征和其对于的分类结果。

现输入没有标签的数据,将新数据的每个特征值和样本集的数据对应特征进行比较,计算出距离最近的前k个数据(k近邻的k的出处)。比较这k个数据,将分类结果出现次数最多的结果,作为最终的结果。k通常不大于20。

2、距离计算公式

假设数据A有n个特征(x11,x12,x13…x1n),数据B的n个特征值为(x21,x22,x23…x2n),则AB两点的距离为

3、knn举例

假设数据有两个特征,数据集3个数,A(1,1,1),特征为x;B(0,1,0),特征为y;C(0,0,1),特征为y。则新加入的一个点D(1,1,0),要确定其特征,则需要计算AD、BD、CD三者的距离,取前k个值(由于这里数据太少,就取第一个值),即为D的特征。

三、kNN实施过程

对于未知类别属性,加入数据集,每次都需要执行以下操作:

1、计算已知类别数据集中的点与当前点之间的距离。

2、按距离的次序从小到大排序。

3、取排序结果的前k个值。

4、确定前k个值出现的频率。

5、返回频率最高的分类,即为分类结果。

四、代码实现(Python)

1、实现部分(文件名kNN.py)

1)引入python的numpy处理库以及operator库

from numpy import *

import operator

2)#训练数据集,特征2个,并且有对应的分类结果

def createDataSet():

group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])

labels = ['A', 'A', 'B', 'B']

return group, labels

3)训练和测试函数,输入待分类数据、训练集、对应分类结果、k值

def classify0(inX, dataSet, labels, k):

#计算距离

dataSetSize = dataSet.shape[0]

diffMat = tile(inX, (dataSetSize, 1)) - dataSet

sqDiffMat = diffMat**2

sqDistances = sqDiffMat.sum(axis=1)

distances = sqDistances**0.5

#排序

sortedDistIndicies = distances.argsort()

classCount = {}

#取排序结果前k个,确认分类结果出现最多的数据

for i in range(k):

voteIlabel = labels[sortedDistIndicies[i]]

classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

sortedClassCount= sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)

returnsortedClassCount[0][0]

4)测试

def testsimpleknn():

group,labels = createDataSet()

result = classify0([0,0],group,labels,3)

return result

2、执行

在linux系统,进入python,输入import kNN,kNN.testsimpleknn(),结果是B,表示[0,0]数据会被分到特征值B。

——written by linhxx 2017.12.28

  • 发表于:
  • 原文链接http://kuaibao.qq.com/s/20171228B0B9L600?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券