星标或者置顶【OpenCV学堂】
干货文章与技术教程第一时间送达
OpenCV DNN模块
Deep Neural Network - DNN 是OpenCV中的深度神经网络模块,支持基于深度学习模块前馈网络运行、实现图像与视频场景中的
图像分类
对象检测
图像分割
其模型导入与加载的相关API支持以下深度学习框架
tensorflow - readNetFromTensorflow
caffe - readNetFromCaffe
pytorch - readNetFromTorch
darknet - readNetFromDarknet
OpenCV3.4.1以上版本支持tensorflow1.11版本以上的对象检测框架(object detetion)模型导出使用,当前支持的模型包括以下:
也就是说通过tensorflow object detection API框架进行迁移学习训练模型,导出预测图之后,可以通过OpenCV3.4.1以上版本提供几个python脚本导出graph配置文件,然后就可以在OpenCV DNN模块中使用tensorflow相关的模型了。感觉十分方便,下面就按照操作走一波!
使用tensorflow模型
根据tensorflow中迁移学习或者下载预训练模型不同,OpenCV DNN 模块提供如下可以使用脚本生成对应的模型配置文件
tf_text_graph_ssd.py
tf_text_graph_faster_rcnn.py
tf_text_graph_mask_rcnn.py
这是因为,OpenCV DNN需要根据text版本的模型描述文件来解析tensorflow的pb文件,实现网络模型加载。 对SSD对象检测模型,生成模型描述文件运行以下命令行即可(在一行执行):
python tf_text_graph_ssd.py
--input /path/to/model.pb
--config /path/to/example.config
--output /path/to/graph.pbtxt
以MobileNet-SSD v2版本为例,首先下载该模型,解压缩以后会发现里面有一个frozen_inference_graph.pb文件,使用tensorflow加载预测图进行预测的代码如下:
运行结果如下:
基于frozen_inference_graph.pb生成graph.pbtxt模型配置文件,命令行运行截图如下:
使用OpenCV DNN模块加载tensorflow模型(frozen_inference_graph.pb与graph.pbtxt),实现预测图使用的代码如下(注意此时不需要依赖tensorflow):
运行结果如下(跟tensorflow中的运行结果完全一致,OpenCV DNN果然靠谱):
OpenCV DNN 行人检测
本人尝试了基于tensorflow object detection API使用MobileNet-SSD v2迁移学习实现自定义数据集训练,导出预测图之后,使用OpenCV DNN模块的python脚本生成对象的图配置文件graph.pbtxt,通过OpenCV加载模型使用,实时预测,最后上一张运行结果图:
OpenCV DNN调用代码如下
一勤天下无难事
百思胸中有良谋
欢迎扫码加入【OpenCV研习社】
领取专属 10元无门槛券
私享最新 技术干货