首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据处理性能对比?

今天为大家分享一个关于数据处理性能的对比,从原生,Pandas ,Numpy这三个方面对比?你觉得哪个更优秀呢?对于一个数据科学家来说,速度和时间是一个很至关重要的的因素

下图显示了我的实验结果(详情如下),与纯Python的处理速度做出对比。

如你所见,Numpy的表现比Pandas的表现要好几倍。我个人喜欢用Pandas来简化许多繁琐的数据科学任务,它是我的首选工具。但是如果预计的处理时间超过多个小时,那么很遗憾,我只能使用Numpy来替代Pandas。

我非常清楚实际的性能可能会有很大的不同,这取决于任务和处理类型。所以请把这些结果仅仅作为参考。没有任何一个单独的测试可以全面对比所有软件工具的性能。

简介

在下面的 Notebook 中你将会比较 Python 原生方法, Pandas 和 Numpy 处理数据的速度。

导入模块

制作模拟随机数据集

Dataset size 54818 records

Python 原生方法

Pandas 方法

Numpy 方法

检查是否所有的方法生成同样的结果

比较运行时间

Python average time: 38.77917420864105 seconds

Pandas average time: 10.483694124221802 seconds

Numpy average time: 2.914765810966492 seconds

展示结果

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20190104A0HJ2500?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券