UCan下午茶深圳站,抱紧“云+AI”,你准备好了吗.
如今 AI 被誉为技术界的「爆款」,不假;AI 技术发展逐渐趋于成熟,没错。可是技术应用于行业场景并成功实现的难度系数呢?还是蛮高!如何利用云计算降低 AI 落地的门槛,再也不用担心「认知、算法、数据」的「围追堵截」?如何在企业强调成本、AI 要求投入的「两难境地」中通过「云端赋能」有效降低研发成本、加快方案迭代?如何在云计算的「神助攻」下完美实现 AI 产品化的「业务领跑」?
会上,UCloud LabU 深度学习开发工程师范融为与会开发者带来了有关「AI 公有云平台实践」的主题分享。
据悉,范融所在的团队目前已经推出 AI 在线服务、AI 训练服务两个产品。其中 AI 在线服务 PaaS 平台在 2016-2017 年可信云大会上获得了 AI 行业云服务奖;AI 训练服务全程支持了 2017 年 AI Challenger 大赛的顺利开展,在该领域表现十分出色。
说到代表性的案例,徐强提及了 2017 年 AI Challenger 大赛。赛事规模自不用多说,就连科研数据也是最大数量级的,据了解有 1000 万的中英文翻译数据,30 万的图像数据。
在有关 NLP 的知识以及实践的分享中,他提到,其实电脑理解的文本与人理解的文本会有一些共同之处,通常也是从三个等级来体会。例如,对文本进行字词分析;再在这个基础上做一些段落分析,涉及语法关系、上下文的纠错等;再上层就是篇章级分析,可以达到文本相似度、组织模型、分类模型等结果。
总结来看,深度学习用于文本挖掘的确显示了很多优点,例如可以使用大量无监督的数据提高能力;端到端的过程让文本输入、任务训练再到输出的环节并不需要做很多处理,更重要的是能够克服传统模型的缺点。
当前,AutoML 是人工智能发展的一个重要方向,受到 Google,Facebook 等诸多公司的重视,近期在 AutoML 领域,特别是深度神经网络模型搜索也呈现了很多突破性的进展。
在「AutoML 人工智能自动化模型设计与进化算法实现」的分享中,钱广锐表示,在当前的实际场景中的确存在很多情况是单一模型并不能完全适应的,复合型模型在一些场景中特别需要。人工智能模型的设计是一个复杂的工作,要设计的小、准、快更是复杂,对此探智立方在该领域做了很多探索。
领取专属 10元无门槛券
私享最新 技术干货