大数据观察
了解大数据,关注大数据观察吧!
每个想了解最新大数据资讯的人,都关注了我
文 / 数据君
用户(买家、卖家)分层模型也是数据化运营中常见的解决方案之一,它与数据化运营的本质是密切相关的。
精细化运营必然会要求区别对待,而分层(分群)则是区别对待的基本形式。
分层模型是介于粗放运营与基于个体概率预测模型之间的一种折中和过渡模型,其既兼顾了(相对粗放经营而言比较)精细化的需要,又不需要(太多资源)投入到预测模型的搭建和维护中,因而在数据化运营的初期以及在战略层面的分析中,分层模型有着比较广泛的应用和较大的价值。
正如预测模型有特定的目标变量和模型应用场景一样,分层模型也有具体的分层目的和特定用途,这些具体的目的和用途就决定了分层模型的构建思路和评价依据。
其常用的场景为:
客户服务团队需要根据分层模型来针对不同的群体提供不同的说辞和相应的服务套餐;
企业管理层需要基于在线交易卖家数量来形成以其为核心的卖家分层进化视图;
运营团队需要通过客户分层模型来指导相应的运营方案的制订和执行,从而提高运营效率和付费转化率等。
这些分层模型既可以为管理层、决策层提供基于特定目的的统一进化视图,又可以给业务部门做具体的数据化运营提供分群(分层)依据和参考。
分层模型常用的技术既包括统计分析技术(比如相关性分析、主成分分析等),又可以含有预测(响应、分类)模型的技术(比如通过搭建预测模型发现最重要的输入变量及其排序情况,然后根据这些变量对分层进行大致的划分,并通过实际数据进行验证),这要视具体的分析目的、业务背景和数据结构而定,同时要强调的是,一个好的分层模型的搭建一定是需要业务方的参与和贡献的,而且其中的业务逻辑和业务思考远远胜过分析技术本身。
主题 |用户(买家、卖家)分层模型
插图 | 网络来源
作 者 介 绍
数据君:)
了解大数据,关注大数据观察
部分图文来自网络,侵权则删
我想给你一个理由 继续面对这操蛋的生活
领取专属 10元无门槛券
私享最新 技术干货