首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

机器学习 Machine Learning

1.项目介绍

机器学习(Machine Learning)正在广泛应用于各种领域,不断学习,充实自己,才能跟上步伐。

在Gihub发现了一个项目,图文并茂,由浅入深,有完整的Python代码,非常值得借鉴。截至目前,包含以下内容:

数据预处理

简单线性回归

多元线性回归

逻辑回归

k近邻法(k-NN)

支持向量机(SVM)

决策树

随机森林

项目地址:

https://github.com/MachineLearning100/100-Days-Of-ML-Code

2.例子

支持向量机(support vector machine):

Python代码:

#Day13: Support Vector Machine (SVM)

#Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

#Importing the dataset

dataset = pd.read_csv('../datasets/Social_Network_Ads.csv')

X = dataset.iloc[:, [2, 3]].values

y = dataset.iloc[:, 4].values

#Splitting the dataset into the Training set and Test set

from sklearn.cross_validation import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

#Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

#Fitting SVM to the Training set

from sklearn.svm import SVC

classifier = SVC(kernel = 'linear', random_state = 0)

classifier.fit(X_train, y_train)

#Predicting the Test set results

y_pred = classifier.predict(X_test)

#Making the Confusion Matrix

from sklearn.metrics import confusion_matrix

cm = confusion_matrix(y_test, y_pred)

#Visualising the Training set results

from matplotlib.colors import ListedColormap

X_set, y_set = X_train, y_train

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),

np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),

alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

c = ListedColormap(('red', 'green'))(i), label = j)

plt.title('SVM (Training set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

#Visualising the Test set results

from matplotlib.colors import ListedColormap

X_set, y_set = X_test, y_test

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),

np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),

alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],

c = ListedColormap(('red', 'green'))(i), label = j)

plt.title('SVM (Test set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

输出结果:

  • 发表于:
  • 原文链接https://kuaibao.qq.com/s/20180809G1SY8O00?refer=cp_1026
  • 腾讯「腾讯云开发者社区」是腾讯内容开放平台帐号(企鹅号)传播渠道之一,根据《腾讯内容开放平台服务协议》转载发布内容。
  • 如有侵权,请联系 cloudcommunity@tencent.com 删除。

扫码

添加站长 进交流群

领取专属 10元无门槛券

私享最新 技术干货

扫码加入开发者社群
领券