强化学习(reinforcement learning),是机器学习的一个重要分支,也是当下机器学习最火热的研究领域。强化学习的本质是解决决策问题,针对一个具体问题得到一个最优的策略,使得在该策略下获得的奖励最大。
当前的机器学习算法可以分为3种:有监督的学习(Supervised Learning)、无监督的学习(Unsupervised Learning)和强化学习(Reinforcement Learning),结构图如下所示:
强化学习是从动物学习、参数扰动自适应控制等理论发展而来,其基本原理是:如果Agent的某个行为策略导致环境正的奖赏(强化信号),那么Agent以后产生这个行为策略的趋势便会加强。Agent的目标是在每个离散状态发现最优策略以使期望的折扣奖赏和最大。
强化学习主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。
小孩强化学习实验
小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。
小孩就是 agent,他试图通过采取行动(即行走)来操纵环境(行走的表面),并且从一个状态转变到另一个状态(即他走的每一步),当他完成任务的子任务(即走了几步)时,孩子得到奖励(给巧克力吃),并且当他不能走路时,就不会给巧克力。
以上信息整理来自于网络,信息若有遗漏,欢迎随时补充~
Hello,Radarer
领取专属 10元无门槛券
私享最新 技术干货