雷锋网 AI 研习社按,今年一月,吴恩达团队公布医学影像数据集MURA,MURA 是目前最大的 X 光片数据库之一,包含源自 14982 项病例的 40895 张肌肉骨骼X光片。1 万多项病例里有 9067 例正常的上级肌肉骨骼和 5915 例上肢异常肌肉骨骼的 X 光片,部位包括肩部、肱骨、手肘、前臂、手腕、手掌和手指。每个病例包含一个或多个图像,均由放射科医师手动标记。
图:MURA 数据库,包括肩部,肱骨,手肘,前臂,手腕,手掌和手指等上肢。
日前,斯坦福宣布基于 MURA 发起一项检测肌肉异常的深度学习挑战赛。
主办方使用隐藏测试集进行模型评估,参赛团队需要在 Codalab 上提交代码,然后他们提供的代码将会在非公开测试集上运行。主办方表示,这样的设置保证了比赛的公平性。
此前,基于 MURA,吴恩达团队开发了一个有效的异常检测模型,他们将一个或多个 X 光片输入该模型预测每个 X 光片的异常概率,然后得出同一病例所有 X 光片异常概率的平均值,之后作为 X 光片的异常概率输出。他们从 209 项持续跟踪的病例中挑选了 6 个病例,将模型和专业放射科医生给出的诊断结果进行比较,发现模型的诊断能力达到了与放射科医生相当的水平。「在诊断手指和手腕异常时,模型检测异常的能力强于最好的医生。然而,在诊断膝、前臂、肱骨和肩部异常时,模型的表现不如医生的表现。」
那么这次的比赛,会产生出新的强大的深度学习模型吗?拭目以待。
比赛信息参见:https://stanfordmlgroup.github.io/competitions/mura/
领取专属 10元无门槛券
私享最新 技术干货